
626

N
N

T
:2

02
0I

P
PA

T0
06 Deep Kernel Representation

Learning for Complex Data
and Reliability Issues
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Contents

1 Motivation and Contribution 10
1.1 Statistical Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Contributions and Publications . . . . . . . . . . . . . . . . . . . . . . . 16
1.4 Manuscript Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

I - Deep Kernel Architectures for Complex Data 19

2 Reminders on Operator-Valued Kernels 21
2.1 Reminders on Scalar Kernels . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Reminders on Operator-Valued Kernels . . . . . . . . . . . . . . . . . . 25
2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Kernel Autoencoders for Complex Data 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 The Kernel Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Connection to Kernel Principal Component Analysis . . . . . . . . . . . 39
3.4 Theoretical Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Optimization of Deep Kernel Architectures 54
4.1 A Representer Theorem for Composed Criteria . . . . . . . . . . . . . . 55
4.2 Non-Convexity of the Problem . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Finite Dimensional Gradient Descent . . . . . . . . . . . . . . . . . . . . 59
4.4 General Hilbert Space Resolution . . . . . . . . . . . . . . . . . . . . . . 64
4.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Dualizing Operator-Valued Kernel Machines 77
5.1 Reminders on Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2 The Double Representer Theorem . . . . . . . . . . . . . . . . . . . . . . 80
5.3 Specific Instances of Dual Problems . . . . . . . . . . . . . . . . . . . . . 88
5.4 Handling Integral Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

II - Reliable Machine Learning 102

6 Reminders on U-statistics 104
6.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



CONTENTS 4

6.3 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 Robust Mean Estimators 114
7.1 The Median-of-Means Estimator . . . . . . . . . . . . . . . . . . . . . . 115
7.2 The Median-of-Randomized-Means Estimator . . . . . . . . . . . . . . . 120
7.3 The Median-of-U -Statistics Estimator . . . . . . . . . . . . . . . . . . . 126
7.4 The Median-of-Randomized-U -Statistics Estimator . . . . . . . . . . . . 131
7.5 Estimation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8 Robust Learning via Medians-of-(Randomized-Pairwise)-Means 140
8.1 Minimizing a MoM Estimate of the Risk . . . . . . . . . . . . . . . . . . 141
8.2 Minimizing a MoRM estimate of the Risk . . . . . . . . . . . . . . . . . 145
8.3 The MoM-U Minimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.4 The Mo(R)M and Mo(R)U Gradient Descents . . . . . . . . . . . . . . . 151
8.5 Tournament Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.6 Learning Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
8.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

9 Learning from Biased Training Samples 165
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
9.2 Background and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 168
9.3 The Debiased ERM Procedure . . . . . . . . . . . . . . . . . . . . . . . 171
9.4 Theoretical Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
9.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Conclusions and Perspectives 195

Appendices 198
A The Bounded Differences Inequality . . . . . . . . . . . . . . . . . . . . 198
B Probabilities Upper-Bounding . . . . . . . . . . . . . . . . . . . . . . . . 198
C Useful Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
D Details on Incomplete U -Statistic Bounded Difference . . . . . . . . . . 200

Bibliography 201



Remerciements

Je tiens ici à remercier toutes les personnes sans qui ce manuscrit n’aurait pu voir le
jour, du moins sous sa forme actuelle.

Mes premiers remerciements vont à mes deux directeurs, à Florence, pour m’avoir
guidé tout au long de ces trois (et quelques) années à travers un univers aussi riche
que passionnant, et dont explorer les idées aura toujours été un plaisir, et à Stephan,
pour sa complémentarité qui m’aura permis d’étudier bien plus de sujets que je n’aurai
osé l’imaginer en débutant cette thèse. J’aurai beaucoup appris durant ces années de
doctorat, et je vous le dois en grande partie.

I also thank Gábor Lugosi and Jean-Philippe Vert for having reviewed my manuscript,
Thomas Bonald for having accepted to serve as a physically present president of the
jury in these complex sanitary times, as well as Hachem Kadri and Julien Mairal for
being be part of my jury.

Merci à Alex et Lucho, cela a été un réel plaisir de travailler avec vous, et j’ose penser
que ce fut réciproque. Je vous souhaite tout le meilleur pour la suite. Merci également
à Olivier le sorcier pour sa disponibilité et son aide précieuse.

Merci à Mathurin, sans qui ma thèse n’aurait assurément pas eu la même saveur, de
Barceloneta en meilleure pizza, de Kamikaze en cordon d’hôtel emprunté, les années
passent trop vite quand on est bien entouré, à Pierre, jamais à court de salive lorsqu’il
s’agit du passage à l’échelle des méthodes à noyaux, et à la Gazelle Gana: c’est vraiment
très appréciable un co-bureau qui choisit de lui même la pire chaise, le plus petit bureau,
et la place avec le soleil dans les yeux!

Mreci à Kveni le Bon Marcheur, dont les problèmes de mémoire trouvenront une solutino
j’en suis sûr, au de bon air Quentin et à son pendant maléfique, le plein de contentieux
Charles, à Simon en souvenir de notre petite virée australe, à Alexandre et sa bonne
foi au baby, à Mastane et Robin, avec qui je partage mes débuts, et dont j’attends
dorénavant les soutenances avec impatience.

Merci aux vieux grognards: Albert (continue, ça fait toujours plaisir de se faire appeler
les jeunes), Guillaume, si vieux qu’il prétend avoir vu de son vivant son Olympique
triompher de la capitale, Anna, dont pour la première fois depuis bien longtemps je ne
devrais pas suivre les pas, Adil et ses coupes de cheveux fantaisistes, Raymondinho le
plombier de ces dames, et Paul de Télécom avant l’heure, mon sauveteur de M2.

Merci et bon courage à la nouvelle vague: Rico de Porto Novo, Hamid, Guillaume,
Anas, Emile, Pierre, Nidham, Kimia, Dimitri, Rémi, allez, Palaiseau c’est pas si loin!

Merci à tous d’avoir fait de chaque jour à Télécom un moment agréable à partager à
vos côtés.

À mes parents, qui m’auront toujours encouragé à faire ce que j’aimais, sans jamais me
soucier du reste.

À Maud, dont la patience face aux (trop nombreuses) nuits de travail saura je l’espère
trouver une juste récompense à travers ce manuscrit et cette soutenance.





Abstract
The first part of this thesis aims at exploring deep kernel architectures for complex
data. One of the known keys to the success of deep learning algorithms is the ability
of neural networks to extract meaningful internal representations. However, the theor-
etical understanding of why these compositional architectures are so successful remains
limited, and deep approaches are almost restricted to vectorial data. On the other
hand, kernel methods provide with functional spaces whose geometry are well studied
and understood. Their complexity can be easily controlled, by the choice of kernel or
penalization. In addition, vector-valued kernel methods can be used to predict kernel-
ized data. It then allows to make predictions in complex structured spaces, as soon as
a kernel can be defined on it.

The deep kernel architecture we propose consists in replacing the basic neural mappings
by functions from vector-valued Reproducing Kernel Hilbert Spaces (vv-RKHSs). Al-
though very different at first glance, the two functional spaces are actually very similar,
and differ only by the order in which linear/nonlinear functions are applied. Apart from
gaining understanding and theoretical control on layers, considering kernel mappings
allows for dealing with structured data, both in input and output, broadening the ap-
plicability scope of networks. We finally expose works that ensure a finite dimensional
parametrization of the model, opening the door to efficient optimization procedures for
a wide range of losses.

The second part of this thesis investigates alternatives to the sample mean as substi-
tutes to the expectation in the Empirical Risk Minimization (ERM) paradigm. Indeed,
ERM implicitly assumes that the empirical mean is a good estimate of the expecta-
tion. However, in many practical use cases (e.g. heavy-tailed distribution, presence of
outliers, biased training data), this is not the case.

The Median-of-Means (MoM) is a robust mean estimator constructed as follows: the
original dataset is split into disjoint blocks, empirical means on each block are com-
puted, and the median of these means is finally returned. We propose two extensions
of MoM, both to randomized blocks and/or U-statistics, with provable guarantees. By
construction, MoM-like estimators exhibit interesting robustness properties. This is
further exploited by the design of robust learning strategies. The (randomized) MoM
minimizers are shown to be robust to outliers, while MoM tournament procedure are
extended to the pairwise setting.

We close this thesis by proposing an ERM procedure tailored to the sample bias issue.
If training data comes from several biased samples, computing blindly the empirical
mean yields a biased estimate of the risk. Alternatively, from the knowledge of the
biasing functions, it is possible to reweight observations so as to build an unbiased
estimate of the test distribution. We have then derived non-asymptotic guarantees
for the minimizers of the debiased risk estimate thus created. The soundness of the
approach is also empirically endorsed.
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Résumé

Cette thèse débute par l’étude d’architectures profondes à noyaux pour les données com-
plexes. L’une des clefs du succès des algorithmes d’apprentissage profond est la capacité
des réseaux de neurones à extraire des représentations pertinentes. Cependant, les rais-
ons théoriques de ce succès nous sont encore largement inconnues, et ces approches sont
presque exclusivement réservées aux données vectorielles. D’autre part, les méthodes
à noyaux engendrent des espaces fonctionnels étudiés de longue date, les Espaces de
Hilbert à Noyau Reproduisant (Reproducing Kernel Hilbert Spaces, RKHSs), dont la
complexité est facilement contrôlée par le noyau ou la pénalisation, tout en autorisant
les prédictions dans les espaces structurés complexes via les RKHSs à valeurs vectorielles
(vv-RKHSs).

L’architecture proposée consiste à remplacer les blocs élémentaires des réseaux usuels
par des fonctions appartenant à des vv-RKHSs. Bien que très différents à première
vue, les espaces fonctionnels ainsi définis sont en réalité très similaires, ne différant que
par l’ordre dans lequel les fonctions linéaires/non-linéaires sont appliquées. En plus du
contrôle théorique sur les couches, considérer des fonctions à noyau permet de traiter
des données structurées, en entrée comme en sortie, étendant le champ d’application
des réseaux aux données complexes. Nous conclurons cette partie en montrant que ces
architectures admettent la plupart du temps une paramétrisation finie-dimensionnelle,
ouvrant la voie à des méthodes d’optimisation efficaces pour une large gamme de fonc-
tions de perte.

La seconde partie de cette thèse étudie des alternatives à la moyenne empirique comme
substitut de l’espérance dans le cadre de la Minimisation du Risque Empirique (Em-
pirical Risk Minimization, ERM). En effet, l’ERM suppose de manière implicite que la
moyenne empirique est un bon estimateur. Cependant, dans de nombreux cas pratiques
(e.g. données à queue lourde, présence d’anomalies, biais de sélection), ce n’est pas le
cas.

La Médiane-des-Moyennes (Median-of-Means, MoM) est un estimateur robuste de l’espé-
rance construit comme suit: des moyennes empiriques sont calculées sur des sous-
échantillons disjoints de l’échantillon initial, puis est choisie la médiane de ces moy-
ennes. Nous proposons et analysons deux extensions de MoM, via des sous-échantillons
aléatoires et/ou pour les U-statistiques. Par construction, les estimateurs MoM présen-
tent des propriétés de robustesse, qui sont exploitées plus avant pour la construction de
méthodes d’apprentissage robustes. Il est ainsi prouvé que la minimisation d’un estim-
ateur MoM (aléatoire) est robuste aux anomalies, tandis que les méthodes de tournoi
MoM sont étendues au cas de l’apprentissage sur les paires.

Enfin, nous proposons une méthode d’apprentissage permettant de résister au biais de
sélection. Si les données d’entraînement proviennent d’échantillons biaisés, la connais-
sance des fonctions de biais permet une repondération non-triviale des observations,
afin de construire un estimateur non biaisé du risque. Nous avons alors démontré des
garanties non-asymptotiques vérifiées par les minimiseurs de ce dernier, tout en sup-
portant empiriquement l’analyse.



Notation

X Input space

Y Output space

YX = F(X ,Y) Set of applications from X to Y

L(Y) Bounded linear operators on Y

k : Y × Y → R Output scalar kernel

K : X × X → L(Y) Operator-valued kernel

HK ⊂ YX Vector-valued RKHS associated to K

IY Identity operator on Y

In Identity matrix of size n

Rn×p Set of matrices of size n by p

Tr(A) Trace of operator or matrix A

A∗ Adjoint of operator A ∈ L(Y)

A> Transpose of matrix A

Ai: ith line of matrix A

‖A‖p,q `p,q row wise mixed norm: `q norm of the lines `p norms

f? Fenchel-Legendre conjugate of function f

f � g Infimal convolution of functions f and g

χS Characteristic function of set S: null on S, +∞ otherwise

1{·} Indicator of an event

P{·} Probability of an event

E[·] Expectation of an event

For any loss function ` : Y ×Y → R, any predictor h ∈ YX and any labeled observation
z = (x, y) ∈ Z = X ×Y, the shortcut notation `(h, z) may be used instead of `(h(x), y).
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Motivation and Contribution

Contents

1.1 Statistical Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Contributions and Publications . . . . . . . . . . . . . . . . . . . . . . . 16
1.4 Manuscript Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

In its generic form, supervised Machine Learning can be seen as the task of inferring,
from a set of examples, the relationship that might exist between some explanatory
variables, also called features, and a target output, often referred to as label. Algorithms
are computational procedures that take as input a sample of observations, the training
dataset, and return a relationship, or prediction function. If a distinction could be made,
Machine Learning would be an algorithm-oriented study, while Statistical Learning
focuses on theoretical guarantees and statistical aspects.

From an algorithmic point of view, the first dominant approach in Machine Learning,
popularized during the 1990s by Support Vector Machines (Cortes and Vapnik, 1995),
has been that of kernel methods. Apart from providing the best empirical results at the
time (see e.g. MNIST database), kernel methods are grounded on solid mathematical
foundations (Aronszajn, 1950), and supported by strong arguments such as margin
theory (Vapnik, 1998). Another advantage of kernel methods is their ability to deal
with complex structured data, ranging from graphs (Mahé and Vert, 2009), to trees
and time series (Cuturi et al., 2007). This is made possible by the use of the kernel
trick in the input space, ensuring that only the knowledge of the kernel evaluations is
required to learn kernel machines. Notice that recent works by Brouard et al. (2016b)
have introduced the use of the kernel trick in the output space. Up to an inverse problem
resolution, it allows to handle structured data in output as well. This remark turns out
to be crucial in the next chapters. But the popularity of kernel methods may also come
from the natural tuning parameters the practitioner can leverage to control the class
complexity: choices of kernel and penalization. In particular, choosing the kernel results
in the choice of a (possibly implicit) data representation, completely decoupled from the
learning stage. If this was considered as a strength until recently, the advances made
by Deep Learning approaches tend to question this idea.

Indeed, with the recent developments of computational power, neural networks produce
nowadays state-of-the-art algorithms for numerous tasks (e.g. ImageNet challenge). In
opposition to kernel methods, our theoretical understanding of why these architectures
are so successful remains nonetheless limited. One known, if not fully understood, reason
to this success is the capacity of neural networks to automatically extract meaningful
representations, along the training process itself (Erhan et al., 2009). This paradigm
breaks with the kernel vision, and makes Representation Learning a central issue. Its

http://yann.lecun.com/exdb/mnist/
http://www.image-net.org/
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scope is however constrained by the intrinsic nature of neural nets, as the operations
they perform on inputs mainly apply to vectorial data (e.g. convolution). An important
part of this manuscript thus investigates the data representation question, by adopting
an intermediary position that leverages advantages from both deep and kernel methods.

From a theoretical perspective, a vast majority of algorithms select a prediction function
by minimizing the errors its predictions incur on the training dataset. If sufficiently
many examples are available, one may hope that good prediction functions during the
training stage will also provide accurate predictions on new test datapoints following the
same law. Assessing this generalization capacity is one of the major issues Statistical
Learning tries to address. In that respect, solutions to Empirical Risk Minimization
(ERM, e.g. Devroye et al. (1996b)) are usually studied under suitable class complexity
assumptions by means of concentration inequalities for empirical processes (Boucheron
et al., 2013). Nevertheless, the more and more complex tasks addressed by Machine
Learning make vanilla analyses often inadequate. The second common thread of this
manuscript can be seen as adapting these guarantees to three unfriendly situations
encountered in practice: compositional architectures with infinite dimensional outputs,
outliers in the training set and heavy-tailed data, presence of sample bias.

As a first go, we shall make the above discussion a bit more formal, and briefly recall
in Section 1.1 the theoretical framework of Statistical Learning this manuscript builds
upon. Despite tremendous successes, using off-the-shelf Machine Learning algorithms
as black boxes, what is now possible thanks to libraries such as scikit-learn (Pedregosa
et al., 2011), often yields deceptive results in practice. Indeed, in many real-world
applications obstacles arise, that jeopardize standard approaches and analyses. Three
of them, acting as motivations, are exposed in Section 1.2. Section 1.3 is then devoted to
the contributions we have developed to address these issues, with a list of publications
resulting from this work. Section 1.4 finally details the organization of the manuscript.

1.1 Statistical Learning

Let Z = (X,Y ) be a random variable valued in a space Z = X × Y with unknown
probability distribution P . Here, Y represents some target (e.g. a class, a real value),
and X some features supposedly useful to predict Y . The general goal of supervised
Machine Learning is to recover from realizations of Z the relationship that might exist
between X and Y . Let ` : Y × Y → R be some loss function defining a discrepancy on
space Y. The generic ideal supervised problem then consists in finding

h∗ ∈ argmin
h measurable

R(h) = EP
[
`
(
h(X), Y

)]
.

In the particular case of binary classification, Y = {−1,+1}, `(y, y′) = 1{y 6= y′} and
h∗ is trivially given by the so called Bayes classifier

h∗(x) = 2 · 1
{
η(x) ≥ 1/2

}
− 1,

with η(x) = P{Y = 1 | X = x} the posterior probability. However, the latter requires
the knowledge of P , that we cannot access in practice. Empirical Risk Minimization
(ERM) consists in replacing the unknown expectation by an empirical average computed
on a sample Sn = {zi = (xi, yi)}i≤n independent identically distributed (i.i.d.) as Z.
Moreover, optimization on the whole set of measurable functions is often impossible in
practice, and one has to restrict the search domain to a so called hypothesis set H ⊂ YX .

https://scikit-learn.org/stable/
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The problem then consists in finding

ĥn ∈ argmin
h∈H

R̂n(h) =
1

n

n∑
i=1

`
(
h(xi), yi

)
.

While the first part of this manuscript focuses on a specific hypothesis set (namely the
composition of functions from vector-valued Reproducing Kernel Hilbert Spaces), the
second part explores alternatives to the empirical mean as substitutes to the intractable
expectation.

The performance of any predictor h is often assessed through the excess risk

E(h) = R(h)−R(h∗).

The excess risk of ĥn can be decomposed into an approximation error, characterizing
how far the best solution is from the hypothesis set H, and an estimation error, due to
the difference between the empirical average minimized and the true expected value:

E(ĥn) = R(ĥn)−R(h∗H)︸ ︷︷ ︸
estimation error

+R(h∗H)−R(h∗)︸ ︷︷ ︸
approximation error

,

with h∗H the minimizer of R(h) on H. Once H is fixed, the approximation error is
usually considered as given and part of the problem. From now on, we thus drop the
notation h∗H for h∗. More focus is put on the estimation error, that can be bounded as
follows

R(ĥn)−R(h∗) = R(ĥn)− R̂n(ĥn) + R̂n(ĥn)− R̂n(h∗) + R̂n(h∗)−R(h∗),

≤ 2 sup
h∈H

∣∣∣R̂n(h)−R(h)
∣∣∣,

using that ĥn minimizes R̂n(h) on H. It is then enough to control the empirical process
suph∈H R̂n(h) − R(h). Assuming that supy,y′ `(y, y

′) ≤ 1, the Bounded Differences
inequality (Appendix A) yields that it holds with probability 1− δ

sup
h∈H

R̂n(h)−R(h) ≤ ESn

[
sup
h∈H

R̂n(h)−R(h)

]
+

√
ln 1

δ

2n
.

Classical symmetrization arguments then allows to control the right hand side in terms
of Rademacher averages (Bartlett and Mendelson, 2002):

ESn

[
sup
h∈H

R̂n(h)−R(h)

]
= ESn

[
sup
h∈H

R̂n(h)− ES′n
[
R̂′n(h)

]]
,

≤ ESn,S′n

sup
h∈H

1

n

n∑
i=1

`(h, zi)− `(h, z′i)

 ,
≤ ESn,S′n,σ

sup
h∈H

1

n

n∑
i=1

σi

(
`(h, zi)− `(h, z′i)

) ,
≤ 2ESn,σ

sup
h∈H

1

n

n∑
i=1

σi`(h, zi)

 ,
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where we have used successively the introduction of a phantom sample S ′n independent
from Sn and identically distributed, Jensen’s inequality, the introduction of n i.i.d.
Rademacher random variable (σi)i≤n such that P

{
σi = 1

}
= P

{
σi = −1

}
= 1/2, and

the notation abuse `(h, z) for `(h(x), y), that is utilized throughout this manuscript.

Definition 1.1. Let H ⊂ RZ be a hypothesis set, and Sn = {zi = (xi, yi)}i≤n ∈ Zn a
fixed sample of size n. The empirical Rademacher complexity of class H is defined as

R̂(H,Sn) = Eσ

sup
h∈H

1

n

n∑
i=1

σih(zi)

 ,
with (σi)i≤n n i.i.d. Rademacher random variables. The Rademacher complexity of
class H of size n and according to distribution P is defined as

Rn(H) = E
[
R̂(H,Sn)

]
= ESn,σ

sup
h∈H

1

n

n∑
i=1

σih(zi)

 .
Intuitively, Rademacher averages can be seen as an evaluation of the class capacity to
fit random noise. Notice that using the Bounded Differences inequality again allows to
switch from Rademacher complexities to their empirical versions.

Rademacher averages are standard complexity measures, and the analyses produced in
the present manuscript heavily build upon them. In Part I, they are extended to infinite
dimensional outputs for a specific choice of function class. In Part II, they are adapted
to the presence of outliers, and help controlling a Median-of-Means empirical process.

Remark 1.2. It seems important to recall that the framework described so far is that
of supervised Statistical Learning. Unsupervised Learning happens when the random
variable of interest does not contain any target. One may be interested then in building
homogeneous groups of observations (clustering), or simply inferring the underlying
distribution. However, the lack of possible comparison often makes it complex to assess
the quality of answers given to an Unsupervised Learning problem.

We next move to three concrete problems encountered in practice, which motivated the
subsequent works.

1.2 Motivations

In practice, many problems arise, that may downgrade the performance of Machine
Learning approaches if they are not addressed correctly. We now illustrate three of
them on practical examples

Diabetes Occurrence Prediction. Assume a binary classification setting, where one
has to predict if an individual will develop diabetes or not. Without prior work, the
observations (i.e. the patients) are described by a large number of variables, also called
features. This may include physiological data, census data, or any other descriptor.
Learning a predictive function from these raw data is very unlikely to work, as the
potentially explanatory variables are hidden among a large number of irrelevant ones.
One alternative consists in asking a physician for insights. He or she will help selecting
good features, such as age, gender, or family background, that are known from clinical



CHAPTER 1. MOTIVATION AND CONTRIBUTION 14

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000
Silicon Weight (kg)

0

100

200

300

400

500
O

cc
u
re

n
ce

s

Figure 1.1 – Distribution of the Silicon Daily Production

observation to influence diabetes occurrence. Even more critical, he or she will probably
advise to consider a new feature, the Body Mass Index (BMI = weight / size2), that has
been shown empirically to be highly correlated to the development of type 2 diabetes
(Dubois-Laforgue et al., 2000).

This example is very instructive, as both discarding irrelevant features, also known as
feature selection, or creating new ones (feature engineering) are two of the key goals
of Representation Learning. This recent Machine Learning domain (see Chapter 3,
Section 3.1.1) indeed aims at extracting relevant representations from raw data in an
unsupervised fashion (supervision might though be added to tailor the representation
to a specific purpose). If the difficulty of no supervision has been overcome through
the design of self-supervised criteria such as Autoencoders (Chapter 3, Section 3.1.2),
the latter model only applies to vectorial data. On the other hand, there is a critical
need in chemoinformatics to learn molecule representations (Matsuda et al., 2005).
Indeed, currently available feature vectors are either low-informative (long and sparse
fingerprints) or too complex (labeled graphs mimicking the molecule structure). These
data are thus traditionally handled through Kernel Methods (Chapter 2), and do not
benefit from the recent algorithmic advances, mostly devoted to vectorial inputs. The
first part of the present manuscript is then dedicated to bridging this gap, and tries
to offer an alternative benefiting both from the relevance of Kernel Methods and deep
architectures to solve the Structured Representation Learning problem.

Silicon Production. The second example is taken from my personal monitoring
experience as a scientific advisor for master’s students. These students were working
jointly with Ferroglobe, an electrometallurgical company specialized in silicon metal
production. Their goal was to infer the working process of a silicon furnace, in order to
maximize the silicon production while minimizing electricity consumption. The data at
disposal featured the daily silicon production, reproduced in Figure 1.1. Knowing that
productions were manually entered in the database, observations around 20 tons a day
may reasonably be considered as outliers. Yet, the furnace works in a cyclical fashion,
and removing these points would result in removing the whole cycles they pertain to,
potentially harming the predictive functions learned on a drastically reduced dataset.
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Figure 1.2 – Gender-Specific Image Captioning (from Burns et al. (2018))

Annotation mistakes, and more generally outliers, constitute a crucial issue for Machine
Learning practitioners. Ignoring them, and computing standard empirical means as in
Section 1.1, is likely to generate many mistakes, as a small number of very atypical
values like that of Figure 1.1 heavily shifts optimal decision functions. Discarding them
seems not a viable option neither, due to the loss of information induced. This is all
the more true for U -statistics (Chapter 6), that compare tuples of observations: one
corrupted observation contaminates all tuples it appears in. While Median-of-Means
approaches have been developed to address these issues for learning criteria writing as
simple means (Lecué et al., 2018), fewer efforts have been made to design robust and
computationally efficient pairwise learning strategies. Part II of this manuscript thus
presents an attempt to do so, via the randomization of the original Median-of-Means
(MoM) estimator.

Women also Snowboard. The third and last motivating example is taken from
Burns et al. (2018). The goal pursued here is to predict the gender of a person from
a picture of him/her in context. What has been observed empirically is that parts of
the image motivating the algorithm’s decision do not describe intrinsically the person,
but rather rely on objects in the scene (see Figure 1.2). This results in predicting no
“woman” caption for snowboard scenes, as a vast majority of training images containing
a snowboard are labeled as “man”. In the context of decision making and socially
impacting algorithms, it is central to deal with such bias issues.

The fact that the test distribution may differ, to some extent, from the training one
(e.g. no woman seen snowboarding during the train phase) is known as dataset shift
(Quionero-Candela et al., 2009). Its study is of considerable interest for the application
of Machine Learning, as assuming the distribution to be invariable is often unrealistic
in practice. Dataset shift can be due to a wide variety of causes (Heckman, 1990),
and previous contributions in the literature usually propose ad hoc solutions for specific
problems, or concentrate on covariate shift, a simple case of dataset shift, where the
conditional distribution remains unchanged. The work presented in Chapter 9 rather
aims at proposing a general ERM framework to address the more global sample bias
issue with theoretical guarantees.
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1.3 Contributions and Publications

We now list the contributions we have developed to address the issues previously raised.

About structured representation learning :
• Introduction of Kernel Autoencoders (KAEs) that combine deep architectures and

operator-valued kernels (OVKs) to allow autoencoding on complex structured data

• Kernel Autoencoders as deep versions of Kernel Principal Component Analysis

• Generalization bound tailored to infinite dimensional outputs

• Representer Theorem devoted to Kernel Autoencoders’ compositional architecture

• Optimization strategy coupling Gradient Descent (GD) and Kernel Ridge updates

• Python package for Deep Input Output Kernel Regression (encompasses KAEs)

About operator-valued kernel machines:
• Double Representer Theorem to solve OVK dual problems under mild assumptions

• New loss functions unlocked for OVK machines with infinite outputs

About robustness to heavy-tailed data and outliers:
• Extension of the MoM estimator to randomized blocks, with guarantees

• Extension of the MoM estimator to (randomized) U -statistics, with guarantees

• Adaptation of MoMminimizers and MoM GD to randomized / U -statistic versions

• Extension of tournament procedures to the case of pairwise learning

About robustness to selection bias:
• Asymptotic guarantees for the density estimation problem in a general sampling

bias framework made non-asymptotic

• Plugging density estimation into a risk minimization problem to derive a general
debiased ERM framework, with guarantees extended to the minimizers

• Python package to compute the debiasing weights from the biasing functions

These contributions have resulted in several accepted publications and preprints, that
are presented here in chronological order (∗ indicates equal contribution).

I P. Laforgue, S. Clémençon, F. d’Alché-Buc. Autoencoding any data through
kernel autoencoders. In Proceedings of Artificial Intelligence and Statistics, 2019.

I P. Laforgue, S. Clémençon, P. Bertail. On medians of (Randomized) pairwise
means. In Proceedings of International Conference on Machine Learning, 2019.

I P. Laforgue, S. Clémençon. Statistical learning from biased training samples.
arXiv preprint arXiv:1906.12304, 2019.

I P. Laforgue∗, A. Lambert∗, L. Brogat-Motte, F. d’Alché-Buc. On the dualization
of operator-valued kernel machines. arXiv preprint arXiv:1910.04621, 2019.

https://github.com/plaforgue/kae
https://github.com/plaforgue/db_learn
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1.4 Manuscript Organization

The rest of the manuscript is organized as follows. Chapters 2 and 6 recall basic notions
related to Parts I and II, while contributions are exposed in Chapters 3 to 5 and 7 to 9.

Part I is devoted to the analysis of deep kernel architectures for complex data.

I Chapter 2 gathers reminders about scalar kernel methods and their vector-valued
extensions. The latter indeed provide functional spaces whose geometry is well
understood, and that can be controlled either by the choice of kernel or the norm
penalization. More importantly, they allow for predicting complex structured
objects through the kernelization of the output. Functions from vector-valued
Reproducing Kernel Hilbert Spaces (vv-RKHSs) are the building blocks for the
architectures developed in the next chapter.

I Chapter 3 is dedicated to the introduction and analysis of Kernel Autoencoders.
Inspired from standard Autoencoders, Kernel Autoencoders are compositions of
functions from vv-RKHSs, that compress and reconstruct the inputs. The ability
of functions from vv-RKHSs to handle infinite dimensional inputs and outputs
allows to extend the autoencoding scheme to all types of data, by first mapping
them through a canonical feature map. A clear connection to Kernel Principal
Component Analysis is established, as well as a generalization bound in terms of
reconstruction error. This architecture however shall not be limited to the task of
autoencoding. Deep kernel machines, for which inputs and outputs differ, benefit
from the same guarantees, opening many applications ranging from structured
prediction to the learning of output embeddings.

I Chapter 4 also deals with Kernel Autoencoders, but from an optimization point of
view. Despite the non-convexity of the criterion, a Representer Theorem dedicated
to the composition architecture ensures a finite expansion for every layer. When
all internal spaces are finite dimensional, the problem is fully characterized by a
finite dimensional parameter and a Gradient Descent strategy can be applied in
a straightforward manner. When the output space is infinite dimensional, it is
proved that the gradient may still easily propagate through the last layer, allowing
for internal coefficients updates. The last layer’s infinite dimensional coefficients
are alternatively updated using the Kernel Ridge Regression closed form. Finally,
numerical experiments are presented, both on synthetic and biological datasets.

I Chapter 5 investigates a duality approach to vv-RKHSs with values in infinite
dimensional Hilbert spaces. A Double Representer Theorem, that expresses the
optimal coefficients as linear combinations of the outputs, allows to tackle many
loss functions, so far unused within infinite dimensional vv-RKHSs. The analysis
of the dual problems also provides interesting insights on the assumptions needed
on the operator-valued kernel to make the infinite dimensional problem (easily)
computable. The particular cases of ε-insensitive Ridge Regression and Huber
Regression are thoroughly studied, from their dual problems derivation to the
undeniable empirical improvements they yield in surrogate approaches. Of course,
these new losses can be plugged on the last layer of the deep kernel machines
described in precedent chapters. Interestingly, the results established here indicate
that a finite dimensional parametrization is possible, even for infinite dimensional
outputs. This suggests that faster and better optimization procedures than the
alternated Kernel Ridge Regression previously recommended are achievable.
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Part II focuses on reliable alternatives to standard ERM in presence of outliers or bias.

I Chapter 6 recalls some basic notions about U -statistics. These quantities appear
naturally in Machine Learning when the criterion of interest involves pairs of
observations (e.g. in metric learning, ranking). More surprisingly, U -statistics
also arise during the analysis of the next chapter’s randomized estimators. Their
strong concentration properties are then crucial to derive sharp bounds for these
newly introduced estimators.

I Chapter 7 explores robust mean estimators inspired from the Median-of-Means.
The standard Median-of-Means estimator is built as follows: first partition the
dataset into groups of equal size, then compute the empirical mean on each block,
and finally take the median of the computed means. This estimator introduced
in the 1980s is particularly well suited to outliers and heavy-tailed distributions.
Indeed, one atypical data may contaminate one block only, but is less likely to
affect the final estimator, as the median should not select the mean of a corrupted
block. This estimator is further extended to the case of randomized blocks, and
similar guarantees are derived despite the created dependence between blocks.
The estimator is then tailored to U -statistics, both standard and randomized. The
computationally attractive Median-of-Incomplete-U -Statistics is also considered.
Unfortunately, proof techniques used so far happen to be inadequate to derive
satisfactory guarantees for this last estimator.

I Chapter 8 then exploits the previously introduced robust estimators to perform
learning. The minimizers of a Median-of-Means estimator of the risk have been
shown to exhibit good properties in presence of outliers. These guarantees are
extended to minimizers of the randomized and U -statistics versions developed in
the previous chapter. The Median-of-Means Gradient Descent algorithm is also
adapted to all settings. The randomized version even shows desirable properties,
as it naturally avoids local minima, without requiring any additional and artificial
shuffling at each iteration. Another way to use Median-of-Means estimators in
learning consists in computing tournament procedures. This approach compares
the performances of pair of candidates, and finally selects a decision function
with provably low excess risk, under mild assumption on the distribution. The
tournament technique is adapted to the pairwise setting.

I Chapter 9 addresses the sample bias issue. In this setting, the training data
at disposal does not follow the test distribution. Instead, several datasets are
available, generated from biased distributions, absolutely continuous with respect
to the test one. From the knowledge of the biasing functions, and under mild
identifiability assumptions, it is then possible to compute a debiased estimate of
the test distribution. When plugged into the empirical risk, it yields a reweighted
ERM problem, whose weights are nontrivial solutions to a complex system of
equations. The asymptotic guarantees about the debiased distribution estimate
are first made non-asymptotic. These non-asymptotic guarantees then translate
into guarantees about the debiased risk estimate, and finally to its minimizers.
The generality of this approach (it totally encompasses the covariate shift scenario)
makes it useful in many practical situations, and its soundness is finally endorsed
by conclusive numerical experiments.
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The first part of the present manuscript aims at exploring deep kernel architectures for
complex data.

One of the known keys to the success of deep learning algorithms is the ability of neural
networks to extract meaningful internal representations (Erhan et al., 2009). However,
the theoretical understanding of why these compositional architectures are relevant and
so successful remains limited. Furthermore, aside from recent advances on graph neural
networks (Kipf and Welling, 2016a), deep approaches are almost restricted to vectorial
data, by the nature itself of the operations they perform on inputs (e.g. convolution).

On the other hand, kernel methods provide with functional spaces whose geometry are
well studied and understood. Their complexity can be easily controlled, either by the
choice of kernel or penalization (Chapter 2). In addition, vector-valued kernel methods
can be used to predict kernelized data. It then allows to make predictions in complex
structured spaces, as soon as a kernel can be defined on it (Section 2.2.2).

The deep kernel architecture proposed in Chapter 3 consists in replacing the neural
mappings of the form σ(Wx+b) generally used in standard neural networks by functions
from vector-valued Reproducing Kernel Hilbert Spaces. Although very different at first
glance, the two functional spaces are actually very similar, and differ only by the order
in which linear/nonlinear functions are applied (Remark 3.1).

Apart from gaining understanding and theoretical control on layers, considering kernel
mappings allows for dealing with structured data, both in input and output. Hence, the
main purpose of deep kernel architectures is not to challenge neural networks on tasks
they have been optimized for during decades, such as image recognition. Alternatively,
experiments presented in Chapter 4 highlight their ability to handle complex objects
like molecules.

Finally, recent works exposed in Chapter 5 ensure a finite dimensional parametrization
of the model, even when outputs are infinite dimensional or kernelized. These results
open the door to efficient optimization procedures, for a wide range of losses and kernels.
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Kernel methods were at the core of Machine Learning’s development during the 1990s.
Based on well-understood mathematical concepts (Aronszajn, 1950), and combined with
careful theoretical approaches (e.g. margin theory, Cortes and Vapnik (1995); Vapnik
(1998)), they provided state-of-the-art algorithms on tasks such as digits recognition
(LeCun et al., 1998). If Deep Learning approaches now globally outperform them for
image or speech recognition, their relevance today still comes from their intrinsic ability
to handle non-vectorial data, both in input and output. In particular, kernel methods
remain among the most popular approaches to deal with biological sequences, making
them a key asset in the field of bioinformatics and computational biology (Schölkopf
et al., 2004; Saigo et al., 2004; Brouard et al., 2016b).

In this introductory chapter, we first recall important notions about scalar kernels
(Section 2.1). In Section 2.2, we next focus on a major extension of the latter, widely
used in the present manuscript: operator-valued kernels (OVKs) and their associated
vector-valued Reproducing Kernel Hilbert Spaces (vv-RKHSs). Finally, in Section 2.2.2
are detailed several important applications of OVKs and vv-RKHSs, which the works
presented in Chapters 3 and 5 build upon.

2.1 Reminders on Scalar Kernels

If one considers the standard regularized-ERM supervised learning criterion

min
h∈H

1

n

n∑
i=1

`
(
h(xi), yi

)
+ Reg(h), (2.1)

kernel methods can be seen as a specific choice of functional space H in which the
optimal solution is searched, namely Reproducing Kernel Hilbert Spaces (RKHSs in
short). Incidentally, the assumption made on H may be summarized as the continuity
of its functions evaluations.
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Definition 2.1. The Hilbert space H ⊂ RX is a Reproducing Kernel Hilbert Space if
and only if for any x ∈ X the following mapping is continuous

Fx :

(
H → R
h 7→ h(x)

)
.

However, another popular definition of RKHSs is based on their associated reproducing
kernel. This alternative construction is detailed in the next section, as well as the
equivalence with Definition 2.1.

2.1.1 Kernels and RKHSs

Another way to define a RKHS, the space in which we restrict our search for the optimal
regression function h in Problem (2.1), is to build them from reproducing kernels. As a
first go, let us recall the definition of positive definite kernels.

Definition 2.2. Let X be any set. A (scalar) positive definite kernel on X is an
application k : X × X → R that satisfies the following two properties:

1. ∀x, x′ ∈ X 2, k(x, x′) = k(x′, x),

2. ∀(xi)i≤n ∈ X n,α ∈ Rn,
∑n

i,j=1 αik(xi, xj)αj ≥ 0.

One may already notice that k : (x, x′) 7→ 〈x, x′〉X is trivially a positive definite kernel on
any Hilbert space X . Similarly, if there exist a Hilbert H, and a application φ : X → H,
X denoting here any set, then one may easily verify that k : (x, x′) 7→ 〈φ(x), φ(x′)〉H
is also a positive definite kernel. Interestingly, the converse is also true, as revealed by
the following theorem.

Theorem 2.3. Let X be any set. An application k : X × X → R is a positive definite
kernel on X if and only if there exist a Hilbert space H and an application φ : X → H
such that

∀x, x′ ∈ X 2, k(x, x′) =
〈
φ(x), φ(x′)

〉
H
.

The proof of Theorem 2.3 has been established in Aronszajn (1950) for the general
formulation stated here, while previous partial proofs for X compact and k continuous
or X countable may be found in Mercer (1909) and Kolmogorov (1941) respectively.

The next theorem now links positive definite kernels and Reproducing Kernel Hilbert
Spaces.

Theorem 2.4. Let X be any set, and k : X × X → R a positive definite kernel on X .
Then there exists a unique Hilbert space Hk ⊂ RX such that

• ∀x ∈ X , k(·, x) ∈ Hk,

• ∀x ∈ X , ∀h ∈ Hk, h(x) = 〈h, k(·, x)〉Hk .

The positive definite kernel k is then called a reproducing kernel, and Hk its associated
RKHS coincides with H of Theorem 2.3.
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If any RKHS as defined in Theorem 2.4 directly satisfies Definition 2.1 by the use of
Cauchy-Schwarz inequality, it can be easily shown that the converse holds true by virtue
of Riesz representation theorem.

Hence, after having set the search space as a RKHS, this rich mathematical background
helps analyzing and understanding the kernel machines, i.e. the algorithms induced by
different choices of loss function ` in Problem (2.1).

2.1.2 Kernel Machines

Come back now to Problem (2.1), with the classical specific choice of regularization
Reg(h) = (Λ/2)‖h‖2Hk , for some penalization parameter Λ > 0:

min
h∈Hk

1

n

n∑
i=1

`
(
h(xi), yi

)
+

Λ

2
‖h‖2Hk . (2.2)

Another crucial tool in kernel methods, that leverages the Hilbert structure of the search
space, is the Representer Theorem, that ensures the optimal solution actually lies in a
finite dimensional subspace of Hk. Formally, it is stated as follows.

Theorem 2.5. Let X be any set, endowed with a positive definite kernel k, Hk ⊂ RX
its associated RKHS, and (xi)i≤n ∈ X n. Let V : Rn+1 → R be a functional, strictly
increasing with respect to its last argument. Then, if ĥ denotes the solution to problem

min
h∈Hk

V
(
h(x1), . . . , h(xn), ‖h‖Hk

)
,

there exist (α̂i)i≤n ∈ Rn such that ĥ writes

ĥ =
n∑
i=1

k(·, xi)α̂i.

Proof. Let E be Span{k(·, xi), i ≤ n}. It is a final dimensional subspace of Hk, so that h
can be decomposed into h̄+h⊥, with h̄, h⊥ ∈ E×E⊥. Using the reproducing property,
h(xi) = h̄(xi) for all i ≤ n, while ‖h‖Hk = ‖h̄ + h⊥‖Hk ≥ ‖h̄‖Hk by Pythagoras’
theorem. Therefore, the orthogonal component necessarily makes the overall criterion
increase: it is null, and h admits a decomposition as stated in Theorem 2.5.

This theorem, that applies to all problems expressed as Problem (2.2), together with
the observation that 〈k(·, xi), k(·, xj)〉Hk = k(xi, xj), often referred to as kernel trick,
has important consequences. Indeed, it makes most kernel machines computable, as
long as only dot products are involved in the criterion, and from the knowledge of the
gram matrix K ∈ Rn×n such that Kij = k(xi, xj) only. Consider for instance the Kernel
Ridge Regression problem:

min
h∈Hk

1

2n

n∑
i=1

(
yi − h(xi)

)2
+

Λ

2
‖h‖2Hk .

Theorem 2.5 applies: plugging the expansion and differentiating with respect to the
(αi)i≤n gives that (with bold letter referring to the Rn vectors concatenating the αi’s
or yi’s scalar values):

α̂ = (K + nΛIn)−1y.
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Figure 2.1 – Linear Classification after mapping by φ (adapted from Shehzadex (2017)).

A bit more involved are the Support Vector Machines (SVMs, Cortes and Vapnik (1995);
Vert and Vert (2006)) that feature the hinge loss (the yi’s are assumed here to be labels
in {−1,+1}):

min
h∈Hk

1

2n

n∑
i=1

max
(

0, 1− yih(xi)
)

+
Λ

2
‖h‖2Hk .

SVMs are generally computed using duality (see Chapter 5). But rewriting h(xi) as
〈k(·, xi), h〉Hk = 〈φ(xi), h〉Hk gives an interesting intuition. If the datapoints are not
linearly separable in the original input space, they might be after the mapping through
a high dimensional feature map φ. Kernel methods then just consist in linear techniques
in the high dimensional feature space, where a separating hyperplane is more likely to
exist. This is summarized by Figure 2.1.

Three important remarks can be made at this point. First, since the algorithm only relies
on the φ(xi)’s, the nature of the original inputs xi’s has no incidence. This observation
makes kernel methods of particular interest when inputs are complex objects (Gärtner,
2008). One of the key steps in kernel learning then lies in the design of meaningful
and expressive kernels. Structured objects dealt with include for instance time series
(Cuturi et al., 2007), graphs (Mahé and Vert, 2009), strings (Saigo et al., 2004) or trees
(Vert, 2002). Second, it is important to notice that the (potentially infinite dimensional)
feature representations φ(xi)’s may never be computed explicitly. Indeed, as long as only
dot products (and consequently squared norms) are involved in the optimized criterion,
only the 〈φ(xi), φ(xj)〉Hk = k(xi, xj) need to be computed. This leads to the third
remark. One can actually proceed the other way around. If one algorithm’s criterion
only depends on dot products, then replacing the xi’s by some φ(xi)’s, one creates a
kernelized version of the algorithm. This version is generally not harder to compute, but
can benefit from the new structure of the data in the high dimensional space. This can be
applied in unsupervised learning problematics also, with celebrated adaptations such as
Kernel k-means (Dhillon et al., 2004), Kernel Principal Component Analysis (Schölkopf
et al., 1997, 1998), Kernel Independent Component Analysis (Bach and Jordan, 2002),
or Kernel Canonical Component Analysis (Lai and Fyfe, 2000; Yamanishi et al., 2003;
Hardoon et al., 2004).

Before focusing on the operator-valued extension of scalar kernels, we conclude this
section by giving an upper bound on the Rademacher complexity of (scalar) RKHS
balls. This bound is classical, and similar techniques are used in Chapter 3 to analyze
the complexity of vector-valued extensions of RKHSs.
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Proposition 2.6. Let Hk,Λ = {h ∈ H : ‖h‖Hk ≤ Λ}, Sn = {x1, . . . , xn}, and K the
Gram matrix associated to sample Sn. Then it holds

R̂(Hk,Λ,Sn) =
1

n
Eσ

 sup
h∈Hk,Λ

n∑
i=1

σih(xi)

 ≤ Λ
√

Tr(K)

n
.

Proof.

Eσ

 sup
h∈Hk,Λ

n∑
i=1

σih(xi)

 = Eσ

 sup
h∈Hk,Λ

〈
n∑
i=1

σik(·, xi), h
〉 ≤ ΛEσ

∥∥∥∥∥∥
n∑
i=1

σik(·, xi)

∥∥∥∥∥∥ ,

≤ Λ

√√√√√Eσ

∥∥∥∥∥∥
n∑
i=1

σik(·, xi)

∥∥∥∥∥∥
2

= Λ

√√√√ n∑
i=1

k(xi, xi) = Λ
√

Tr(K).

Kernel methods have been extensively studied in the Machine Learning literature. The
interested reader may refer to the overview proposed in Hofmann et al. (2008), or to the
excellent monographs by Schölkopf et al. (2002), Schölkopf et al. (2004), Shawe-Taylor
et al. (2004), Steinwart and Christmann (2008) and Berlinet and Thomas-Agnan (2011).

We shall now move to operator-valued extensions of scalar kernels, that are crucial tools
in the following of this manuscript

2.2 Reminders on Operator-Valued Kernels

Assume now that the target outputs are not scalar anymore, but rather valued in Rp,
no further assumption being made on the input space X . One straightforward way to
extend scalar kernel methods to this setting simply consists in stacking p independent
functions from a scalar RKHS. This, actually corresponds to the particular case of an
identity decomposable matrix-valued kernel (see Álvarez et al. (2012)). Operator-valued
kernels can themselves be seen as extensions of matrix-valued kernels to the case of
any output Hilbert space Y, and not necessarily Rp. In Section 2.2.1, we detail the
construction of vector-valued Reproducing Kernel Hilbert Spaces (vv-RKHSs) from
Operator-Valued Kernels (OVKs), similarly to what has been done in Section 2.1.1.
In Section 2.2.2 are finally detailed important applications unlocked by the possibility
to predict outputs in infinite dimensional spaces.

Vector-Valued RKHSs also benefit from an important theoretical literature, starting
from the work by Senkene and Tempel’man (1973), or by Micchelli and Pontil (2005),
that the next section is largely inspired from. More recent important contributions
include for instance Caponnetto et al. (2008) and Carmeli et al. (2006, 2010).

2.2.1 Operator-Valued Kernels and Vector-Valued RKHSs

Similarly to scalar kernels, a vv-RKHS can be primarily defined by the continuity of its
functions evaluations.
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Definition 2.7. A Hilbert space H ⊂ YX is a (vector-valued) Reproducing Kernel
Hilbert Space if and only if for any x ∈ X and any y ∈ Y, the following mapping is
continuous

Fx,y :

H → R
h 7→

〈
h(x), y

〉 .

And it can also be constructed through operator-valued kernels.

Definition 2.8. Let X be any set and Y a Hilbert space. A positive definite operator-
valued kernel on X and Y is an application K : X×X → L(Y) that satisfies the following
two properties:

1. ∀x, x′ ∈ X 2, K(x, x′) = K(x′, x)∗,

2. ∀(xi)i≤n ∈ X n, (yi)i≤n ∈ Yn,
n∑

i,j=1

〈
yi,K(xi, xj)yj

〉
Y
≥ 0,

where A∗ denotes the adjoint of any operator A, and L(E) the set of bounded linear
operators of any vector space E.

A simple example of OVK is the separable kernel.

Definition 2.9. Let X be any set and Y a Hilbert space. The OVK K : X × X →
L(Y) is a separable kernel if and only if there exist a positive definite scalar kernel
k : X × X → R, and a positive semi-definite operator A on Y such that:

∀(x, x′) ∈ X 2, K(x, x′) = k(x, x′)A.

If furthermore A = IY , K is said identity decomposable.

The counterpart of Theorem 2.3 is as follows.

Theorem 2.10. Let X be any set and Y a Hilbert space. An application K : X ×X →
L(Y) is a positive definite OVK if and only if there exist a Hilbert space H and an
application Φ: X → L(H,Y) such that

∀x, x′ ∈ X 2, K(x, x′) = Φ(x)Φ∗(x′).

Just as for standard scalar-valued kernels, an OVK can be uniquely associated to a
functional space (its vv-RKHS), as detailed by the next definition.

Definition 2.11. Let K : X ×X → L(Y) be a (positive definite) OVK, and for x ∈ X ,
let Kx : y 7→ Kxy ∈ F(X ,Y) the linear operator such that:

∀x′ ∈ X , (Kxy)(x′) = K(x′, x)y.

There is a unique Hilbert space HK ⊂ F(X ,Y) called the vv-RKHS associated to K such
that ∀x ∈ X :
• Kx spans the space HK (∀y ∈ Y : Kxy ∈ HK)
• Kx is bounded for the uniform norm

• ∀f ∈ HK, f(x) = K∗xf (reproducing property)

Learning within vv-RKHSs also relies on Representer Theorems, that are derived from
the Minimal Norm Interpolation principle.
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Theorem 2.12. Let X be any set, Y a Hilbert space, and (xi, yi)i≤n ∈ (X × Y)n. For
i ≤ n, let Lxi be the linear functional such that Lxih = h(xi) for f ∈ HK. If the Lxi ’s
are linearly independent, then unique solution to the variational problem

min
h∈HK

‖h‖HK ,

s.t. h(xi) = yi, i ≤ n,
is given by

ĥ =
n∑
i=1

K(·, xi)α̂i,

with (α̂i)i≤n ∈ Yn the unique solution to the linear system of equations
n∑
i=1

K(xj , xi)α̂i = yj , j ≤ n.

Proof. Let h be any element of HK such that h(xi) = yi for all i ≤ n. Let h⊥ = h− ĥ.
It holds that ‖h‖2HK = ‖ĥ‖2HK + ‖h⊥‖2HK ≥ ‖ĥ‖

2
HK , so that ĥ is the unique solution.

The next section is now devoted to important learning applications, typically tackled
by the use of vv-RKHSs, and their inherent capacity to handle infinite dimensional
outputs.

2.2.2 Important Applications of Vector-Valued RKHSs

First used in the finite dimensional case (Y = Rp) to solve multi-task regression problems
(Micchelli and Pontil, 2005) and multiple class classification (Dinuzzo et al., 2011), OVK
methods also stand out for their ability to cope with infinite dimensional and functional
outputs. One of the most straightforward application thus made possible is functional
regression. This ranges from the minimization of the L2 norms of square integrable
functions, to the more involved case of learning the whole conditional quantile function.
Furthermore, through the use of a kernel embedding, similar to that done in Figure 2.1,
but for the outputs this time, the OVK framework provides an interesting theoretically
grounded strategy to address structured output prediction.

Leveraging the Functional Nature of the Outputs

A learning scenario, far from being unusual, when OVKs can be of great help is that
of functional regression. For instance, consider a function-to-function problem. Within
this setting, each input xi is a function, that must be mapped to an output function yi.
A very representative example is that of lip acceleration prediction, taken from Ramsay
and Silverman (2007). The training input data consists in 32 electromyograms (EMG)
recording the nervous activity of the lip muscles during 690 milliseconds during which
the patient pronounces the syllable bob. The output data gathers the corresponding
lower lip acceleration curves, on the same period of time. The goal here is to learn a
predictive function h to map each EMG function to the acceleration curve, as illustrated
in Figure 2.2.

A Ridge Regression then corresponds to minimizing overHK ⊂ F(L2[0, 690], L2[0, 690]):

1

2n

n∑
i=1

‖yi − h(xi)‖2L2 +
Λ

2
‖h‖2HK =

1

2n

n∑
i=1

∫ 690

θ=0

(
yi(θ)− (h(xi))(θ)

)2
+

Λ

2
‖h‖2HK .
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Figure 2.2 – Function-to-Function Regression (taken from Kadri et al. (2016)).

This examples has been studied at length in Kadri et al. (2016). The criterion written
above can however be considerably enlarged. Indeed, leveraging the functional nature
of the outputs, on can generalize this integral loss to many more case than the square
of the difference between the targeted and predicted functions.

For some compact set Θ, and a scalar loss function l : Θ× R2 → R, define the integral
loss function:

` :

L2[Θ, µ]× L2[Θ, µ] → R
(f, g) 7→

∫
Θ l
(
θ, f(θ), g(θ)

)
dµ(θ)

 ,

where µ is a probability measure over Θ.

If l(θ, x, y) = 1
2(x− y)2, one recovers the minimizations of the L2 norm of Kadri et al.

(2016). The following two loss functions lead to other interesting problems.

• l(θ, x, y) = max (θ(y − x), (θ − 1)(y − x)). This loss function, referred to as the
pinball loss (Koenker, 2005), is used at fixed θ to perform conditional quantile
regression of some random variables X,Y ∈ Rd × R based on i.i.d. samples
(xi, yi)

n
i=1. The minimization of its integrated counterpart yields an estimate of

the whole conditional quantile function when applied to (xi, yi)
n
i=1, the (yi)

n
i=1

being considered as constant functions in L2[Θ, µ]. Learning the whole quantile
function at the same time yields multiple benefits, among which the possibility
to introduce suitable non-crossing constraints. A complete study of this learning
problem can be found in Brault et al. (2019).

• l(θ, x, y) = |θ − 1{−1}(y)|max (0, 1− yx). Given some fixed θ ∈ [0, 1], this binary
classification loss function is used in cost-sensitive classification (Zadrozny and
Elkan, 2001). The coefficient |θ − 1{−1}(y)| is asymmetric with respect to the
two classes y ∈ {−1, 1}, which models a different impact for mistakes committed
on one class or another. Minimizing the integrated loss lifts the need to choose
the asymmetric coefficient (which is almost never known in practice), and allows
a practitioner to evaluate the effect of this asymmetry posterior to the learning
phase, since the algorithm outputs a maximum-margin classifier as a function of θ.
Brault et al. (2019) also provides examples of the minimization of such an integral
criterion by means of vv-RKHSs.
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Figure 2.3 – Structured Output Prediction.

In the next example, outputs are no longer functions, but structured outputs. However,
a simple mapping through a kernel feature map may transform them into functions in
a Hilbert space. The vv-RKHS machinery next allows to learn a predictive function for
the embedded outputs.

Structured Output Prediction

This denomination refers to a general supervised learning task from an input space X
to an output space Y, such that Y is a finite set of structured objects (Nowozin and
Lampert, 2011). This includes biological sequences, trees, graphs, and more generally
objects composed of several sub-objects. The major difficulty in learning a function
with structured outputs g : X → Y lays in the fact that the set Y is not equipped
with standard tools such as norms and dot products. Therefore, designing a meaningful
loss and learning algorithms requires additional efforts compared to standard regression
frameworks.

While Structural SVMs and variants only cope with discrete structures (Joachims et al.,
2009), another solution is to embed output datapoints into an output feature space FY
through a feature map φ that possesses the desirable properties. Note that embeddings
can be defined either explicitly within the finite dimensional Euclidean space FY = Rp
(see for instance, semantic embeddings and SELF approaches in Ciliberto et al. (2016)),
or implicitly with the help of kernels (Cortes et al., 2005; Brouard et al., 2011). Indeed,
if only dots products are involved in the surrogate criterion that links the inputs xi’s to
the embedded output φ(yi)’s, the use of the kernel trick for the inputs may prevent from
the explicit computation of the feature representations. In that case, φ can be seen as
the canonical feature map associated to a scalar kernel k : Y ×Y → R, and FY = Hk is
its associated RKHS.

By definition of a kernel feature map, the outputs are sent in a Hilbert space, on
which the vv-RKHS methodology applies. After having learnt the surrogate regression
function in the new output space FY , solving a pre-image problem to provide a predicted
output in the original space Y is however necessary. The whole procedure is recapped
in Figure 2.3, and by the following two equations:

(1) ĥ = argmin
h∈HK

n∑
i=1

∥∥∥φ(yi)− h(xi)
∥∥∥2

Y
+

Λ

2
‖h‖2HK ,

(2) ∀x ∈ X , ĝ(x) = argmin
y∈Y

∥∥∥φ(y)− ĥ(x)
∥∥∥2

Y
.
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Compared to finite dimensional embeddings, kernels enable to compute more complex
similarity functions between structured data. For instance, a Gaussian kernel on finite
embeddings implicitly results in using an infinite feature map (Brouard et al., 2016a).
Using infinite dimensional implicit feature maps leads to state-of-the-art methods in
metabolite identification, where molecules are to be predicted from their mass spectra
(Brouard et al., 2016b).

2.3 Conclusion

Kernel methods and RKHSs provide classes of functions for practicing ERM, whose
geometrical structures are well analyzed, and thoroughly studied. Their vector-valued
extensions yield similar understanding, together with the possibility to handle infinite
dimensional outputs. The kernel embedding of the outputs, and the use of the kernel
trick, then allows to perform regression tasks on any structured data. Functions from
vv-RKHSs are the building blocks of the larger functional class which is introduced
in Chapter 3. Their capacity to handle complex data is crucial in their utilization,
especially for Representation Learning (Section 3.1.1). Extending the vector-valued
Representer Theorem to composition of functions is then the key ingredient of Chapter 4
to make the designed model computable. Finally, Chapter 5 considers OVK machines
through the angle of duality. In particular, this approach enables the use of loss functions
that are hardly computable in the primal, but empirically meaningful.
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As seen in Chapter 2, OVKs and vv-RKHSs provide an elegant theoretical framework
to handle infinite dimensional and structured outputs. However, the revolution of Deep
Learning (Ian J. Goodfellow et al., 2016) has shown that models based on the successive
composition of elementary mappings nowadays produce state-of-the-art performances.

The present chapter aims at combining both approaches, and proposes a novel model
to automatically extract vectorial representations from complex structured objects. As
a first go, the model is thoroughly detailed in Section 3.2, building on Operator-Valued
Kernels (OVKs) and vector-valued Reproducing Kernel Hilbert Spaces (vv-RKHSs)
studied in Chapter 2. It is then theoretically investigated, through its link to Kernel
Principal Component Analysis (KPCA) in Section 3.3, or by means of Rademacher
averages extended to infinite dimensional outputs and compositions of functions (see
Section 3.4). In Section 3.5 are listed interesting extensions and applications of the
proposed model. This chapter corresponds to the theoretical contribution of:

I P. Laforgue, S. Clémençon, F. d’Alché-Buc. Autoencoding any data through kernel
autoencoders. In Proceedings of Artificial Intelligence and Statistics, 2019.
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3.1 Introduction

One of the keys to the success of deep learning approaches is the ability of neural
networks to extract meaningful internal representations (Erhan et al., 2009; Zeiler and
Fergus, 2014). This concern has attracted a lot of interest lately, with now a dedicated
world known conference (International Conference on Learning Representations, ICLR).
We start this chapter by a brief overview of the domain, with a particular focus on
Autoencoders, that inspired the proposed model. The context is also recalled, by the
discussion of related works.

3.1.1 Learning Representations

As experienced by any practitioner, data representation is critical to the application
of Machine Learning, whatever the targeted task, supervised or unsupervised. A first
answer to this issue consists in feature engineering, that uses domain knowledge to
create relevant descriptive variables. However, this step requires numerous interactions
with domain experts, and it is often time-consuming. To overcome these limitations,
Representation Learning (e.g. Bengio et al. (2013a)) aims at building automatically
new features in an unsupervised fashion. With a growing concern in the community
about the relevance of data representations, Representation Learning has now become
a proper research field.

One of the most important motivation for Representation Learning is leveraging the
unlabeled data. Indeed, in many applications, annotating the data is expensive and
the unlabeled dataset is often much larger than the labeled one. This is the case, for
instance, of the metabolite identification problem (Brouard et al., 2016b), for which
labeled molecules represent approximately 10, 000 datapoints, compared to the several
millions of unlabeled ones. If one could benefit from this huge amount of unlabeled data
to learn good representations in a purely unsupervised fashion, this should improve the
performance on potential supervised task. This advantage has been made particularly
clear by e.g. Mesnil et al. (2011) and Goodfellow et al. (2012).

The central, and unsolved, question of Representation Learning could be expressed as
follows: “What makes a representation better than another? ”. In the survey by Bengio
et al. (2013a), authors try to list the suitable properties a good representation should
have. Among them can be found smoothness, hierarchical organization of explanatory
factors, shared factors across tasks, natural clustering (observations with different values
for categorical variables should be separate), sparsity. These properties are however
somewhat unmeasurable, and the mathematical understanding of why Representation
Learning may help is still limited, so are the quantitative criteria to assess the goodness
of representations.

Nevertheless, one common consequence can be found among all desirable properties
above listed: that of disentangling causal factors. This is a key feature to perform
transfer learning and domain adaptation (Ben-David et al., 2010), i.e. continue learning
despite the change of the data distribution. In one-shot learning (Fei-Fei et al., 2006),
only one labeled example is available for the targeted supervised task. The rationale
behind is that the unsupervised representation learning phase was sufficiently powerful
to have clearly isolated the classes and disentangled the causal/invariant factors among
classes, so that one labeled observation is enough to predict the label of many others.
In zero-shot learning (Larochelle and Bengio, 2008; Palatucci et al., 2009; Socher et al.,
2013), no labeled data is given for the targeted class. Zero-shot learning is only made
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Figure 3.1 – Greedy Layer-wise Unsupervised Pretraining

possible by a strong underlying structure and the learning of adapted representations,
as may be the case in machine translation for instance (see e.g. Mikolov et al. (2013)),
or in sentiment analysis (Glorot et al., 2011). Nevertheless, it highlights how critical
the choice of representation may be, by allowing to make correct predictions on unseen
examples. The problem of metabolite identification can also be seen as a zero-shot
learning problem. Indeed, every observation is a different molecule, so that it may be
considered as a multiclass classification task, with as many classes as datapoints, and
consequently no labeled training data for any of the classes.

But the primary successes of Representation Learning are to be found in pretraining. It
consists in using unsupervised criteria to learn weights between two successive layers,
that will serve as an initialization for the final fine tuning stage, learnt by minimizing
the supervised criterion, see Figure 3.1. This procedure was very popular during the
mid-2000s (Hinton et al., 2006; Hinton and Salakhutdinov, 2006; Bengio et al., 2007;
Ranzato et al., 2007), and the work by Erhan et al. (2010) performed many experiments
to explain the success of these approaches. However, regularized training techniques
such as dropout (Srivastava et al., 2014) have progressively outperformed unsupervised
pretraining, that is nowadays mostly abandoned except in the field of natural language
processing. Yet, this paradigm has witnessed the resurgence, and promoted the use,
of an interesting unsupervised architecture: Autoencoders. As the model proposed in
this chapter is largely inspired from this so called self-supervised approach, the next
section of this introduction focuses more precisely on this architecture, as well as their
generative variants: Restricted Boltzmann Machines.
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(a) 2-Layer Autoencoder (b) Restricted Boltzmann Machine

Figure 3.2 – Unsupervised Architectures

3.1.2 Autoencoders

Among successful unsupervised Representation Learning methods used in pretraining,
mention has to be made of Autoencoders. According to Ian J. Goodfellow et al. (2016)
(chapter 14 therein): “An autoencoder is a neural network that is trained to attempt to
copy its input to its output”. The difficulty of the reconstruction comes from the fact that
the architecture often contains a bottleneck (Figure 3.2a). The underlying rationale is
that if observations can be accurately reconstructed from the internal compressed codes,
then the latter should have captured the most important properties of the data.

The idea of Autoencoders has a long history in neural networks (Bourlard and Kamp
(1988) for a comparison to Principal Component Analysis, Hinton and Zemel (1994)).
Their generative variants are called Restricted Boltzman Machines, and are depicted in
Figure 3.2b. They are generative neural networks that learn the probability distribution
of inputs by minimizing an energy-based criterion involving hidden units. Re-introduced
by Salakhutdinov and Hinton (2009a), they already existed as Harmoniums in the book
by McClelland et al. (1987). The focus of this chapter being not generative models,
although bridging both approaches would constitute an interesting research direction,
we shall now concentrate on Autoencoders exclusively.

Structural constraints and penalizations can of course be added to the data-fitting term
in order to promote particular architectures. Sparse Autoencoders (Ranzato et al.,
2007, 2008), that features an `1 penalty of the hidden representation, Contractive
Autoencoders (Rifai et al., 2011), that penalizes the derivatives of the encoding function,
and more generally all Regularized Autoencoders (Alain and Bengio, 2014), combining
several types of constraints and penalizations, are further examples of sophistications
around the standard autoencoder criterion.

Apart from bigger networks pretraining, a popular utilization of Autoencoders is thus
dimensionality reduction (e.g. Hinton and Salakhutdinov (2006)). This yields important
applications in information retrieval, and more specifically in semantic hashing, both
applied to textual data (Salakhutdinov and Hinton, 2009b) and images (Weiss et al.,
2009; Krizhevsky and Hinton, 2011). One last interesting application of Autoencoders
can be found in denoising. The idea of Denoising Autoencoders (Vincent et al., 2010)
is to reconstruct the input from a perturbed version of it. Bengio et al. (2013b) have
shown that this method implicitly forces the encoder/decoder pair to learn the structure
of the (non-corrupted) inputs distribution.
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If they have mostly been studied under the angle of neural networks (Baldi, 2012) and
deep architectures (Vincent et al., 2010), the concepts underlying Autoencoders are very
general and go beyond neural implementations. In this chapter, we develop a general
framework inspired from Autoencoders, but with elementary mappings being functions
from vv-RKHSs (Chapter 2). This novel architecture, proposed in Laforgue et al.
(2019a) and referred to as Kernel Autoencoder, allows in particular to autoencode all
data on which a (scalar) kernel can be defined. Before a precise description of the model
in Section 3.2, we close this introduction by recalling a few related works.

3.1.3 Related Works

Kernelizing an Autoencoder criterion has also been proposed by Gholami and Hajisami
(2016). But their approach differs from ours in many key aspects. First, their model is
very restrictive, as it is limited to Autoencoders with two layers, and composed of linear
maps only. Second, its training crucially relies on semi-supervised information, while
our approach is purely unsupervised. Third, it comes with no theoretical analysis, and
within a hashing perspective solely.

Despite a similar denomination, the work by Kampffmeyer et al. (2017) has no direct
connection with that exposed in this chapter. It uses standard Autoencoders, and just
regularize the learning procedure by aligning the latent code with some predetermined
kernel. In the experimental section for instance (Section 4.5 in Chapter 4), we implement
our approach on molecules, seen a labeled graphs: each atom corresponds to a node,
and edges link chemically bonded atoms. This cannot be done by means of standard
Autoencoders, nor by using the work of Kampffmeyer et al. (2017).

As molecule autoencoding is one of the main applications made possible by Kernel
Autoencoders, a word about Graph Neural Networks (Gori et al., 2005; Bruna et al.,
2013; Li et al., 2015; Kipf and Welling, 2016a; Wu et al., 2019) seems appropriate.
Indeed, this domain has gained a lot of attention lately. However, the angle taken
is completely different from that of Kernel Autoencoders. The latter first transform
the graphs through an implicit feature map associated to a kernel, and then practice
autoencoding on this potentially infinite dimensional representation of the graph in
the feature space. In opposition, Graph Neural Networks try to adapt the convolution
operation in standard Neural Networks to the graph’s structure. The goal is to pass
messages along the edges of the graph, to agglomerate them and to transform them, so as
to create higher level representations of each node. Each aggregation and transformation
step is analogous to one layer in a standard Neural Network, and the practitioner finally
gets the graph structure of the beginning, but with new features on the nodes. These
new features can then be used to perform node classification (Kipf and Welling, 2016a),
graph classification (Duvenaud et al., 2015) or link prediction (Kipf and Welling, 2016b).
This last example is called “Graph Autoencoder ”, but it has almost nothing to share with
our approach. It does not really autoencode graphs, but rather feature vectors of nodes,
with the help of an additive graph characterizing the data structure. One approach that
could be linked to ours in its ability to generate graphs is that of Valsesia et al. (2018).
But it is rather inspired by Generative Adversarial Networks, and specifically tailored
to 3D point clouds.

In its will to bridge kernel methods and deep architectures, this work can be linked to
that by Mairal et al. (2014); Mairal (2016). However, these contributions are dedicated
to image processing. They aim at replacing standard image low-level descriptors such
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as Scale-Invariant Feature Transforms and Histograms of Oriented Gradients by kernel
feature maps to gain theoretical control. The use of the image structure is critical here,
to define convolutional kernels on patches, that is not assumed in our work for instance.
We use vv-RKHSs instead, with aim to reconstruct the kernelized representation.

The next section now details at length the model we introduce. Its link with Kernel
Principal Component Analysis and a generalization bound are further presented in
Sections 3.3 and 3.4 respectively.

3.2 The Kernel Autoencoder

We start from the simplest formulation in which a Kernel Autoencoder is a pair of
encoding/decoding functions lying in two different vv-RKHSs, and whose composition
approximates the identity function (Section 3.2.1). This approach is further extended
to a general framework involving the composition of an arbitrary number of mappings,
defined and valued on Hilbert spaces (Section 3.2.2). A crucial application of Kernel
Autoencoders arises if the input/output space is itself a RKHS: it allows to perform
autoencoding on any type of data, by first mapping it to the RKHS, and then applying
a Kernel Autoencoder (Section 3.2.3). The solutions computation, even in infinite
dimensional spaces, is made possible by a Representer Theorem and the use of the
kernel trick in the output space. These aspects are addressed in Chapter 4.

3.2.1 The 2-layer Kernel Autoencoder

Let Sn = (x1, . . . , xn) denote a sample of n independent realizations of a random vector
X, valued in a separable Hilbert space (X0, ‖ · ‖X0), with unknown distribution P , and
such that there existsM < +∞, ‖X‖X0 ≤M almost surely. On the basis of the training
sample Sn, we are interested in constructing a pair of encoding/decoding mappings(
f1 : X0 → X1, f2 : X1 → X0

)
, where (X1, ‖ · ‖X1) is the (Hilbert) representation space.

Just as for standard Autoencoders, we regard as good internal representations the ones
that allow for an accurate recovery of the original information in expectation. The
problem to be solved states as follows:

min
(f1,f2)∈H1×H2

‖f1‖H1
≤t1, ‖f2‖H2

≤t2

ε(f1, f2) :=
1

2
EX∼P

∥∥∥X − f2 ◦ f1(X)
∥∥∥2

X0

, (3.1)

where H1 and H2 are two vv-RKHSs, and t1 and t2 two positive constants. The
vv-RKHS H1 is associated to an OVK K1 : X0 × X0 → L(X1), while vv-RKHS H2

is associated to K2 : X1 ×X1 → L(X0).

Figure 3.3 and Remark 3.1 illustrate the parallel and differences between standard and
kernel 2-layer Autoencoders. Apart from the difference of functional spaces on which the
criterion is optimized, one can already notice that Kernel Autoencoders encompasses
standard ones by their applicability scope. Indeed, when Autoencoders are restricted
to finite dimensional latent spaces (R4 or R2 here), the Kernel Autoencoder only needs
Hilbert spaces. They may be finite dimensional (as the internal representation space
X1 = R2), or infinite dimensional (X0). For computational issues (see Chapter 4), this
possibility is however limited to the input/output space. Nevertheless, it enlarges the
scope of standard Autoencoders, by allowing for the encoding of infinite dimensional
objects (e.g. functions).
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Figure 3.3 – Standard (top) and Kernel (bottom) 2-layer Autoencoders

Following the regularized Empirical Risk Minimization (ERM) paradigm, the expected
risk in Problem (3.1) is replaced by its empirical version

ε̂n(f1, f2) :=
1

2n

n∑
i=1

∥∥∥xi − f2 ◦ f1(xi)
∥∥∥2

X0

,

and a penalty term Ω(f1, f2) := (Λ1/2)‖f1‖2H1
+ (Λ2/2)‖f2‖2H2

is added instead of
the norm constraints (see Theorem 3.4). Solutions to the following regularized ERM
problem shall be referred to as 2-layer Kernel Autoencoder :

min
(f1,f2)∈H1×H2

ε̂n
(
f1, f2

)
+ Ω

(
f1, f2

)
. (3.2)

Remark 3.1. A nice remark can be made about the difference induced by the change
of elementary mappings, from neural ones to functions in vv-RKHSs. Consider some
intermediate representation x ∈ Rd, that must be mapped to the next intermediate space
of dimension p. The neural mapping fNN is parametrized by a matrix A ∈ Rp×d, whose
lines are denoted (aj)j≤p, and an activation function σ. The kernel mapping fvv−RKHS is
associated to a decomposable OVK K = kIp. This is equivalent to stacking p independent
functions (f j)j≤p from the scalar RKHS Hk, associated to the feature map φk. The next
level representations then write

fNN(x) =


σ
(
〈a1, x〉

)
...

σ
(
〈ap, x〉

)
 , and fvv−RKHS(x) =


f1(x)

...
fp(x)

 =


〈
f1, φk(x)

〉
...〈

fp, φk(x)
〉
 .
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This writing is particularly interesting as it reveals that both mappings are composed of
linear transformations and termwise nonlinearities. The neural mapping first uses the
linear dot products with the matrix lines, and then applies the nonlinearity σ. The kernel
mapping does the opposite, by first embedding the input through the nonlinear feature
map φk, and then apply p linear operations. Which function (linear or nonlinear) is
applied first is made even less important as these elementary mappings are meant to
be composed several times. Both global functional spaces are then successions of linear
mappings and nonlinearities. The functional space introduced by composing functions
from vv-RKHSs is thus much closer to the standard Neural Network architecture than
it may seem at first glance.

3.2.2 The Multi-layer Kernel Autoencoder

Like for standard Autoencoders, the model described in Section 3.2.1 can be directly
extended to more than 2 layers. Let L ≥ 3, and consider a collection of Hilbert
spaces X0, . . . , XL, with XL = X0. For 0 ≤ l ≤ L − 1, the space Xl is supposed
to be endowed with an OVK Kl+1 : Xl × Xl → L(Xl+1), associated to a vv-RKHS
Hl+1 ⊂ F(Xl,Xl+1). We then want to minimize ε(f1, . . . , fL) over

∏L
l=1Hl. Setting

Ω(f1, . . . , fL) :=
∑L

l=1(Λl/2)‖fl‖2HL allows for a direct extension of Problem (3.2):

min
fl∈Hl, l≤L

1

2n

n∑
i=1

∥∥∥xi − fL ◦ . . . ◦ f1(xi)
∥∥∥2

X0

+

L∑
l=1

Λl
2
‖fl‖2Hl . (3.3)

3.2.3 The Kernel Autoencoder Applied to Kernelized Data

So far, and up to the regularization term, the main difference between standard and
kernel Autoencoders is the functional space on which the reconstruction criterion is
optimized: respectively neural functions or vv-RKHS ones. But what should also be
highlighted is that vv-RKHS functions are valued in general Hilbert spaces, while neural
functions are restricted to Rd. This enables Kernel Autoencoders to handle data from
infinite dimensional Hilbert spaces (e.g. function spaces), what standard Autoencoders
are unable to do. To our knowledge, this first extension of the autoencoding scheme
is novel. However, a specific choice of functional space in the input/output, namely
(scalar RKHSs) yields even more interesting applications.

Indeed, assume now that inputs are valued in some space X, without any assumption
on its structure. If a scalar kernel k can be defined on X, then we know the existence
of a feature map φ, and a RKHS Hk such that k(x, x′) = 〈φ(x), φ(x′)〉Hk . So once
the inputs have been mapped through φ, we are left with an autoencoding problem on
points necessarily valued in a Hilbert space. The Kernel Autoencoder of Sections 3.2.1
and 3.2.2 applies, with X0 = Hk. This way, one is totally blind to the (real) nature of
the inputs, as autoencoding is practiced on the φ(xi)’s, and it enlarges the applicability
scope of Autoencoders to any space X on which a scalar kernel can be defined. Finite
dimensional representations can thus be extracted from all types of data, which, to
our knowledge, is again a novel extension. Figure 3.4 depicts the procedure, whose
associated criterion reads:

min
fl∈Hl, l≤L

1

2n

n∑
i=1

∥∥∥φ(xi)− fL ◦ . . . ◦ f1(φ(xi))
∥∥∥2

Hk=X0

+

L∑
l=1

Λl
2
‖fl‖2Hl . (3.4)
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x ∈ X

φ(x) ∈ Hk = X0

φ(x) ∈ Hk = X0

KAE
Finite Dimensional
Representation

Figure 3.4 – Kernel Autoencoder (KAE) on Kernelized Data

Remark 3.2. The Kernel Autoencoder on non-kernelized data can be seen as a specific
case of Problem (3.4), with φ = id. Therefore, to avoid too may overlapping names, the
Kernel Autoencoder denomination refers now to the most general case of Section 3.2.3.

Remark 3.3. In order to preserve the Autoencoder-like criterion, Problem (3.4) is
presented with f1 element of any vv-RKHS H1 applied to φ(xi). In practice, and for
computational purposes, H1 is often assumed to be associated to a linear decomposable
OVK K1. This is equivalent to write

min
fl∈Hl, l≤L

1

2n

n∑
i=1

∥∥∥φ(xi)− fL ◦ . . . ◦ f1(xi)
∥∥∥2

H
+

L∑
l=1

Λl
2
‖fl‖2Hl ,

with the only condition on K1 that it must be decomposable (and φ being the canonical
feature map associated to k1). This writing however completely misses the reconstruction
intent, or at least does not make it explicit. This is why formulation of Problem (3.4)
has been preferred.

The next section now draws an interesting connection between the introduced model,
when applied to kernelized data, and Kernel Principal Component Analysis (Schölkopf
et al., 1997, 1998).

3.3 Connection to Kernel Principal Component Analysis

Just as Bourlard and Kamp (1988) have shown a mere equivalence between Principal
Component Analysis (PCA) and standard 2-layer Autoencoders, a similar link can be
established between 2-layer Kernel Autoencoders and Kernel PCA. Throughout this
section’s analysis, a 2-layer Kernel Autoencoder is considered, applied on data φ(xi)’s,
and with decomposable kernels made of linear scalar kernels and identity operators.
Also, there is no penalization (i.e. Λ1 = Λ2 = 0). We thus want to autoencode data
into Rp, after the first embedding through the feature map φ.

After recalling the principle of Kernel PCA (Section 3.3.1), we show the equivalence in
the simple case where φ is valued in a finite dimensional space (Section 3.3.2). Then,
arguments on compact operators allow to extend the proof to infinite-valued feature
maps (Section 3.3.3).
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3.3.1 Kernel Principal Component Analysis

Kernel Principal Component Analysis is an extension of standard PCA to kernelized
data introduced by Schölkopf et al. (1997, 1998). If standard PCA boils down to finding
the eigenvalues and eigenvectors of the empirical covariance matrix

1

n

n∑
i=1

xix
>
i ,

Kernel PCA aims at performing so on the empirical covariance operator of the kernelized
data (for a centered feature map φ):

1

n

n∑
i=1

φ(xi)φ(xi)
∗.

The potential infinite dimensionality of the φ(xi)’s is avoided by noticing that the
eigenvectors of the above operator are necessarily linear combinations of the φ(xi)’s.
For a solution (λk, vk), after the reparametrization vk =

∑n
j=1 αkjφ(xj) for k, j ≤ n,

the vectors αk: ∈ Rn are solutions to the eigenproblems

Kαk = nλkαk,

with K the n× n Gram matrix such that Kij = 〈φ(xi), φ(xj)〉.
We now show how the solution to the two layer Kernel Autoencoder with linear and
decomposable OVKs links with that of Kernel PCA, assuming first that φ is valued in
a finite dimensional space.

3.3.2 Finite Dimensional Feature Map

Assume that φ is valued in Rd, with p < d < n, reminding that p is the dimension
of the internal layer. Let Φ = (φ(x1), . . . , φ(xn))> ∈ Rn×d denote the matrix storing
the φ(xi)

> to autoencode in rows. Note that Kφ = ΦΦ> ∈ Rn×n corresponds to the
Gram matrix associated to φ. As shall be seen in Section 4.1, the optimal encoder
f1 and decoder f2 have a specific form, so that they only depend on two coefficient
matrices, C1 ∈ Rn×p and C2 ∈ Rn×d respectively. Equipped with this notation, one
has: Y = f1(Φ) = ΦΦ>C1 ∈ Rn×p, and Φ̃ = f2(Y ) = Y Y >C2 ∈ Rn×d. Without
penalization, the goal is then to minimize in C1 and C2:∥∥∥Φ− Φ̃

∥∥∥2

Fr
.

Reconstructed matrix Φ̃ being at most of rank p, we know from Eckart-Young Theorem
that the best possible Φ̃ is given by

Φ∗ = UΣpV
>,

where U ∈ Rn×d, Σ ∈ Rd×d, and V > ∈ Rd×d are the thin Singular Value Decomposition
(SVD) of Φ such that Φ = UΣV >, and Σp is equal to Σ, but with the d − p smallest
singular values zeroed.
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It suffices now to prove that there exists a couple of coefficient matrices (C∗1 , C
∗
2 ) such

that fC∗2 ◦ fC∗1 (Φ) = Φ∗. One can verify that
C∗1 = UpΣp

−3/2
,

C∗2 = UV >,

with Up ∈ Rn×p storing only the p largest eigenvectors of Kφ, and Σp ∈ Rp×p the p× p
top left block of Σp, satisfy it. Finally, the optimal encoding returned is

Y ∗ = fC∗1 (Φ) =
(√

σ1u1, . . . ,
√
σpup

)
with u1, . . . , up the p largest eigenvectors of Kφ, and (σi)i≤p the diagonal entries of Σp.
It must be compared to Kernel PCA’s new representations:

Y ∗KPCA =
(
σ1u1, . . . , σpup

)
.

We have thus shown that a specific instance of Kernel Autoencoder can be solved
explicitly using a SVD, and that the optimal coding returned is close to the one output
by Kernel PCA.

3.3.3 Infinite Dimensional Feature Map

Assume now that φ is valued in a general Hilbert space H. Φ is now seen as the linear
operator from H to Rn such that for all α ∈ H

Φα =

(〈
α, φ(x1)

〉
H
, . . . ,

〈
α, φ(xn)

〉
H

)
∈ Rn.

Since Theorem 4.1 makes no assumption on the dimensionality, everything stated in the
finite dimensional scenario applies, except that C2 ∈ L(H,Rn), and that we minimize
instead of the Frobenius norm the Hilbert-Schmidt one∥∥∥Φ− Φ̃

∥∥∥2

HS
=

n∑
i=1

∥∥∥φ(xi)− φ̃i
∥∥∥2

H
,

with φ̃i ∈ H such that (Φ̃α)i = 〈φ̃i, α〉H for i ≤ n. We then need an equivalent
of Eckart-Young Theorem. It still holds since its proof only requires the existence of a
SVD for any operator, which is granted in our case since we deal with compact operators
(they have finite rank lower or equal than n). The end of the proof is analogous to the
finite dimensional case.

We have thus shown that the Kernel Autoencoder model we have introduced can be
regarded as a deep version of Kernel PCA. With two layers only, and specific choices of
kernels, they are equivalent. Adding layers have shown in the standard Autoencoder case
to improve the performances compared to standard PCA (Hinton and Salakhutdinov,
2006). We can hope the same mechanism to work in our setting.

The next section is dedicated to the derivation of a generalization bound by means of
Rademacher averages. The two main difficulties addressed are: 1) the compositional
nature of the functional space on which the reconstruction criterion is optimized, and
2) the potential infinite dimensionality of the inputs/outputs.
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3.4 Theoretical Guarantees

In this section, we establish a generalization bound for the Kernel Autoencoders in terms
of reconstruction error. The difficulty of having compositions of vv-RKHS functions
is addressed by using the work of Maurer and Pontil (2016), adapted to our infinite
dimensional setting. The analysis starts with a classical theorem, stating the equivalence
between constrained and penalized problems. The bound is then stated at the end of
Section 3.4.1, the technical elements of the proof being deferred to Section 3.4.2.

3.4.1 Generalization Bound

While the algorithmic formulation aims at minimizing the regularized Problem (3.3), the
subsequent theoretical analysis focuses on the constrained Problem (3.1). Theorem 3.4
relates the solutions to both problems, so that bounds derived in the latter setting also
apply to numerical solutions of the first one.

Theorem 3.4. Let V : H1 × . . .×HL → R be an arbitrary function. Consider the two
problems:

min
fl∈Hl

V (f1, . . . , fL) +
L∑
l=1

Λl
2
‖fl‖2Hl

 , (3.5)

and
min
fl∈Hl
‖fl‖Hl≤tl

V (f1, . . . , fL). (3.6)

Then, for any (Λl)l≤L ∈ RL+, there exists (tl)l≤L ∈ RL+ such that any (respectively, local)
solution to Problem (3.5) is also a (respectively, local) solution to Problem (3.6).

Proof. Let (Λl)l≤L ∈ RL+, and (f∗l )l≤L a solution to Problem (3.5) for this choice of
regularizers. For l ≤ L, let tl = ‖f∗l ‖Hl . We shall prove that (f∗l )l≤L is also a solution
to Problem (3.6) for this choice of constraints.

Consider (fl)l≤L satisfying Problem (3.6)’s constraints. For l ≤ L, it holds ‖fl‖Hl ≤
tl = ‖f∗l ‖Hl . Hence, we have

∑
l Λl‖fl‖2Hl ≤

∑
l Λl‖f∗l ‖2Hl . On the other hand, by

definition of the f∗l ’s, it holds

V (f1, . . . , fL) +

L∑
l=1

Λl
2
‖fl‖2Hl ≥ V (f∗1 , . . . , f

∗
L) +

L∑
l=1

Λl
2
‖f∗l ‖2Hl .

Thus, we necessarily have: V (f1, . . . , fL) ≥ V (f∗1 , . . . , f
∗
L).

A similar argument can be used for local solutions, details are left to the reader.

Although this result may appear rather simple, we thought it was worth mentioning as
our setting is particularly unfriendly: the objective function V is not assumed convex,
and the variables fl are infinite dimensional. As a consequence, in absence of additional
assumptions, the converse statement (that solutions to Problem (3.6) are also solutions
to Problem (3.5) for a suitable choice of Λl’s) is not guaranteed. The proof indeed relies
on the existence of Lagrangian multipliers, which has been shown when the variables are
finite dimensional (KKT conditions), or when the objective function is convex (Bauschke
et al., 2011), but is not ensured in our case.
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In order to establish generalization bound results for empirical minimizers in the present
setting, we now define two key quantities involved in the proof, i.e. Rademacher and
Gaussian averages for classes of Hilbert-valued functions.

Definition 3.5. Let X be any measurable space, and H a separable Hilbert space. Let
C be a class of measurable functions h : X → H. Recall that Sn = {x1, . . . , xn} ∈ X n
is our sample of interest. Let σ1, . . . , σn be n ≥ 1 independent H-valued Rademacher
variables and define:

R̂(C,Sn) = Eσ

sup
h∈C

1

n

n∑
i=1

〈
σi, h(xi)

〉
H

 .
If H = R, it is the classical Rademacher average (see e.g. Chapter 1, or Mohri et al.
(2012) p.34), while, when H = Rp, it corresponds to the expectation of the supremum
of the sum of the Rademacher averages over the p components of h (see Definition 2.1 in
Maurer and Pontil (2016)). If H is an infinite dimensional Hilbert space with countable
orthonormal basis (ek)k∈N, we have:

R̂(C,Sn) = Eσ

sup
h∈C

1

n

n∑
i=1

∞∑
k=1

σi,k

〈
h(xi), ek

〉
H

 .
The Gaussian counterpart of R̂(C,Sn), obtained by replacing Rademacher random
variables/processes with standard H-valued Gaussian ones, is denoted by Ĝ (C,Sn)
throughout the paper.

For the sake of simplicity, results in the rest of the subsection are derived in the 2-layer
case solely, with X1 finite dimensional (i.e. X1 = Rp), although the approach remains
valid for deeper architectures.

A few notation more is needed (recall that the norm of random variable X is almost
surely bounded by M , see Section 3.2.1). Let

H1,t1 :=
{
f1 ∈ H1 : ‖f1‖H1 ≤ t1

}
,

and similarly

H2,t2 :=

{
f2 ∈ H2 : ‖f2‖H2 ≤ t2, sup

y∈Rp
‖f2(y)‖X0 ≤M

}
.

We also use the notation

Ht1,t2 = H1,t1 ◦ H2,t2 =
{
h ∈ F(X0,X0) : ∃(f1, f2) ∈ H1,t1 ×H2,t2 , h = f2 ◦ f1

}
.

To simplify notation, ε (and ε̂n) may be abusively considered as a functional with one
or two arguments:

ε(f1, f2) = ε(f2 ◦ f1) =
1

2
EX∼P

∥∥∥X − f2 ◦ f1(X)
∥∥∥2

X0

.

Finally, let ĥn denote the minimizer of ε̂n over Ht1,t2 , and ε∗ the infimum of ε on the
same functional space.

The following assumptions on K1 and K2 are needed to establish the bound stated
below.
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Assumption 3.6. There exists K < +∞ such that:

∀x ∈ X0, Tr
(
K1(x, x)

)
≤ Kp.

Assumption 3.7. There exists L < +∞ such that for all y, y′ in Rp:

Tr
(
K2(y, y)− 2K2(y, y′) +K2(y′, y′)

)
≤ L2 ‖y − y′‖2Rp .

The generalization bound then states as follows.

Theorem 3.8. Let K1 and K2 be OVKs satisfying Assumptions 3.6 and 3.7 respectively.
Then, there exists a universal constant C0 < +∞ such that, for any 0 < δ < 1, we have
with probability at least 1− δ:

ε(ĥn)− ε∗ ≤ C0LMt1t2

√
Kp

n
+ 24M2

√
log(2)/δ

2n
.

Remark 3.9. Attention should be paid to the fact that constants in Theorem 3.8 appear
in a very interpretable fashion: the less spread the input (the smaller the constant M),
the more restrictive the constraints on the functions (the smaller K, L, t1 and t2), and
the smaller the internal dimension p, the sharper the bound.

The technical details of Theorem 3.8’s proof are now to be given.

3.4.2 Technical Proof

The proof sketch is as follows:

• first use standard arguments to bound the excess risk by Rademacher averages
(see Chapter 1, Section 1.1 therein) and turn to Gaussian averages,

• then extend Theorem 2 in Maurer (2014) to the infinite dimensional output case,

• finally bound each term appeared in the extension of the above theorem.

Standard Rademacher Generalization Bound.

Let loss ` denote the squared norm on X0: ∀x ∈ X0, `(x) = ‖x‖2X0
. Notice that, on the

set considered, the mapping ` is 2M -Lipschitz, and: `(xi−h(xi))−`(xi′−h(xi′)) ≤ 4M2.
Hence, by applying McDiarmid’s inequality, together with standard arguments in the
statistical learning literature (symmetrization/randomization tricks, see e.g. Theorem
3.1 in Mohri et al. (2012), or again Section 1.1), one may show that, for any δ ∈]0, 1[,
it holds with probability at least 1− δ:

1

2

(
ε(ĥn)− ε∗

)
≤ sup

h∈Ht1,t2
|ε(h)− ε̂n(h)| ≤ 2R̂

(
`◦(id−Ht1,t2),Sn

)
+12M2

√
ln 2

δ

2n
. (3.7)

The subsequent results shall provide tools to properly bound the quantity

R̂
(
` ◦ (id−Ht1,t2),Sn

)
.
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Operations on the Rademacher Average.

As a first go, we state a preliminary lemma that establishes a comparison between
Rademacher and Gaussian averages.

Lemma 3.10. We have: ∀n ≥ 1,

R̂(C,Sn) ≤
√
π

2
Ĝ (C,Sn).

Proof. The proof is based on the fact that γi,k and σi,k
∣∣∣γi,k∣∣∣ have the same distribution,

combined with Jensen’s inequality. See also Lemma 4.5 in Ledoux and Talagrand (1991).

Hence, the application of the lemma above yields:

R̂
(
` ◦ (id−Ht1,t2),Sn

)
≤ 2
√

2M R̂
(
id−Ht1,t2 ,Sn

)
, (3.8)

≤ 2
√

2M

[
R̂
(
{id},Sn

)
+ R̂

(
Ht1,t2 ,Sn

)]
,

≤ 2
√

2M R̂
(
Ht1,t2 ,Sn

)
,

≤ 2
√
πM Ĝ

(
Ht1,t2 ,Sn

)
, (3.9)

where Equation (3.8) directly results from Corollary 4 in Maurer (2016) (observing that,
even if they do not take their values in `2(N) but in the separable Hilbert space X0,
the functions h(x) can replaced by the square-summable sequence (〈h(x), ek〉)k∈N), and
Equation (3.9) is a consequence of Lemma 3.10.

It now remains to bound Ĝ (Ht1,t2 ,Sn) using an extension of a result established in
Maurer (2014), that applies to classes of functions valued in Rm only, while functions
in Ht1,t2 are Hilbert-valued.

Extension of Maurer’s Chain Rule.

The result stated below extends Theorem 2 in Maurer (2014) to the Hilbert-valued
situation.

Theorem 3.11. Let H be a Hilbert space, X a H-valued standard Gaussian random
vector, and f : H → R a L-Lipschitz mapping. We have:

∀t > 0, P
( ∣∣∣f(X)− Ef(X)

∣∣∣ > t

)
≤ exp

(
− 2t2

π2L2

)
.

Proof. It is a direct extension of Corollary 2.3 in Pisier (1986), which states the result
for H = RN only, observing that the proof given therein actually makes no use of the
assumption of finite dimensionality of H, and thus remains valid in our case. The reason
why authors did not establish this general version in their work is probably because they
only needed the RN version for their purpose. Up to constants, it can also be viewed
as an extension of Theorem 4 in Maurer (2014).
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We now introduce quantities involved in the rest of the analysis, see Definition 1 in
Maurer (2014).

Definition 3.12. Let Y ⊂ Rn, H be a Hilbert space, Z ⊂ H, and γ be a H-valued
standard Gaussian variable/process. We set:

D(Y ) = sup
y,y′∈Y

‖y − y′‖Rn ,

G(Z) = sup
z∈Z

Eγ
[〈
γ, z
〉
H

]
.

If H a class of functions from Y to H, we set:

L(H, Y ) = sup
h∈H

sup
y,y′∈Y, y 6=y′

‖h(y)− h(y′)‖H
‖y − y′‖Rn

,

R(H, Y ) = sup
y,y′∈Y, y 6=y′

Eγ

sup
h∈H

〈
γ, h(y)− h(y′)

〉
H

‖y − y′‖Rn

 .

The next result establishes useful relationships between the quantities introduced above.

Theorem 3.13. Let Y ⊂ Rn be a finite set, H a Hilbert space and H a finite class of
functions h : Y → H. Then, there are universal constants C1 and C2 such that, for any
y0 ∈ Y :

G(H(Y )) ≤ C1L(H, Y )G(Y ) + C2R(H, Y )D(Y ) +G(H(y0)).

Proof. This result is a direct extension of Theorem 2 in Maurer (2014) for H-valued
functions. The only part in the proof depending on the dimensionality of H is Theorem
4 in the same paper, whose extension to any Hilbert space is proved in Theorem 3.11.
Indeed, considering Xy = (

√
2/πL(F, Y )) supf∈F 〈γ, f(y)〉 (using the same notation as

in Maurer (2014)) allows to finish the proof like in the finite dimensional case.

Let H′1,t1 be the set of functions from (X0)n to Rnp that take as input Sn = (x1, . . . , xn)
and return (f(x1), . . . , f(xn)), f ∈ H1,t1 . Let Y = H′1,t1(Sn) ⊂ Rnp, and H = (X0)n,
which is a Hilbert space. Let H = H′2,t2 be the set of functions from Rnp to (X0)n

that take as input (y1, . . . , yn) and return (f2(y1), . . . , f2(yn)), f2 ∈ H2,t2 . Finally, let
y0 = (0Rp , . . . , 0Rp) (it actually belongs to H′1,t1(Sn) since the null function is in H′1,t1).
Theorem 3.13 entails that:

G

(
H′2,t2

(
H′1,t1(Sn)

))
≤ C1L

(
H′2,t2 ,H′1,t1(Sn)

)
G

(
H′1,t1(Sn)

)
+ C2R

(
H′2,t2 ,H′1,t1(Sn)

)
D

(
H′1,t1(Sn)

)
+G

(
H′2,t2(0)

)
,

and

Ĝ
(
Ht1,t2 ,Sn

)
≤ C1L

(
H′2,t2 ,H′1,t1(Sn)

)
Ĝ
(
H1,t1 ,Sn

)
(3.10)

+
C2

n
R

(
H′2,t2 ,H′1,t1(Sn)

)
D

(
H′1,t1(Sn)

)
+

1

n
G

(
H′2,t2(0)

)
.

We now bound each term appearing on the right-hand side.
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Bounding each Term in Equation (3.10).

Bounding L(H′2,t2 ,H′1,t1(Sn)). Consider the following assumption, denoting by ‖.‖∗
the operator norm of any bounded linear operator.

Assumption 3.14. There exists a constant L < +∞ such that: ∀(y, y′) ∈ Rp,∥∥∥K2(y, y)− 2K2(y, y′) +K2(y′, y′)
∥∥∥
∗
≤ L2 ‖y − y′‖2Rp .

This assumption is not very compelling since it is enough for K2 to be the sum of T
decomposable kernels kt(·, ·)At such that the scalar feature maps φt are Lt-Lipschitz
(the feature map of the Gaussian kernel with bandwidth 1/(2σ2) has Lipschitz constant
1/σ for instance), and the At operators have finite operator norms σt.

Indeed, we would have then: ∀z ∈ X0,∥∥∥∥∥
(
K2(y, y)− 2K2(y, y′) +K2(y′, y′)

)
z

∥∥∥∥∥
X0

=

∥∥∥∥∥∥∥
 T∑
t=1

‖φt(y)− φt(y′)‖2At

 z

∥∥∥∥∥∥∥
X0

,

≤
T∑
t=1

‖φt(y)− φt(y′)‖2σt ‖z‖X0 ,∥∥∥∥∥
(
K2(y, y)− 2K2(y, y′) +K2(y′, y′)

)
z

∥∥∥∥∥
X0

≤

 T∑
t=1

L2
tσt

 ‖y − y′‖2Rp ‖z‖X0 ,

∥∥∥K2(y, y)− 2K2(y, y′) +K2(y′, y′)
∥∥∥
∗
≤

 T∑
t=1

L2
tσt

 ‖y − y′‖2Rp .
Let K2 satisfying Assumption 3.14, g ∈ H′2,t2 and (y,y′) ∈ Rnp. We have:∥∥∥g(y)− g(y′)

∥∥∥2

(X0)n

=
n∑
i=1

∥∥∥g(yi)− g(y′i)
∥∥∥2

X0

,

=
n∑
i=1

〈
g(yi)− g(y′i), g(yi)− g(y′i)

〉
X0

,

=
n∑
i=1

〈
K2yi(g(yi)− g(y′i)), g

〉
H2

−
〈
K2y′i

(g(yi)− g(y′i)), g
〉
H2

, (3.11)

≤ ‖g‖H2

n∑
i=1

∥∥∥K2yi(g(yi)− g(y′i))−K2y′i
(g(yi)− g(y′i))

∥∥∥
H2

, (3.12)

≤ t2
n∑
i=1

√〈
g(yi)− g(y′i),

(
K2(yi, yi)− 2K2(yi, y′i) +K2(y′i, y

′
i)
)

(g(yi)− g(y′i))

〉
X0

,

(3.13)

≤ Lt2
n∑
i=1

∥∥∥g(yi)− g(y′i)
∥∥∥
X0

‖yi − y′i‖Rp , (3.14)

≤ Lt2
∥∥∥g(y)− g(y′)

∥∥∥
(X0)n

∥∥∥y − y′∥∥∥
Rnp

, (3.15)
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where Equation (3.11) results from the reproducing property in vv-RKHSs (Equation
(2.1) in Micchelli and Pontil (2005)), Equation (3.12) follows from Cauchy-Schwarz
inequality, Equation (3.13) is again a consequence of the reproducing property (e.g.
Equation (2.3) in Micchelli and Pontil (2005)), Equation (3.14) can be deduced from
Assumption 3.14 and Equation (3.15) is a consequence of Cauchy-Schwarz inequality as
well. Hence, we finally have:∥∥∥g(y)− g(y′)

∥∥∥
(X0)n

≤ Lt2
∥∥∥y − y′∥∥∥

Rnp

and consequently

L

(
H′2,t2 ,H′1,t1(Sn)

)
≤ L

(
H′2,t2 ,Rnp

)
≤ Lt2. (3.16)

Bounding Ĝ
(
H1,t1 ,Sn

)
. Consider the assumption below.

Assumption 3.15. There exists a constant K < +∞ such that: ∀x ∈ X0,

Tr
(
K1(x, x)

)
≤ Kp.

This assumption is mild as well, since it is satisfied fro instance by the sum of T
decomposable kernels kt(·, ·)At such that the scalar kernels are bounded by κt (as X is
supposed to be bounded, any continuous kernel is valid). Indeed, we have: ∀x ∈ X0,

Tr
(
K1(x, x)

)
=

T∑
t=1

kt(x, x) Tr(At) ≤

 T∑
t=1

κt‖At‖∞

 p.

Let K1 an OVK satisfying Assumption 3.15 and be such that H1 is separable. We
then know that there exists Φ ∈ L(`2(N),Rp) such that: ∀(x, x′) ∈ X0, K1(x, x′) =
Φ(x)Φ∗(x′) and ∀f1 ∈ H1,∃u ∈ `2(N) such that f1(·) = Φ(·)u, ‖f1‖H1 = ‖u‖`2 (see
Micchelli and Pontil (2005)). We have:

n Ĝ

(
H′1,t1 ,Sn

)
(3.17)

= Eγ

 sup
f1∈H1,t1

n∑
i=1

〈
γi, f1(xi)

〉
Rp

 = Eγ

 sup
‖u‖`2≤t1

n∑
i=1

p∑
k=1

γi,k,
〈

Φ(xi)u, ek

〉
Rp

 ,
= Eγ

 sup
‖u‖`2≤t1

〈
u,

n∑
i=1

p∑
k=1

γi,kΦ
∗(xi)ek

〉
`2

 ≤ t1 Eγ


∥∥∥∥∥∥

n∑
i=1

p∑
k=1

γi,kΦ
∗(xi)ek

∥∥∥∥∥∥
`2

 ,
(3.18)

≤ t1

√√√√√√√Eγ


∥∥∥∥∥∥

n∑
i=1

p∑
k=1

γi,kΦ∗(xi)ek

∥∥∥∥∥∥
2

`2

 ≤ t1
√√√√ n∑

i=1

p∑
k=1

〈
K(xi, xi)ek, ek

〉
Rp
, (3.19)

≤ t1

√√√√ n∑
i=1

Tr
(
K1(xi, xi)

)
, (3.20)

≤ t1
√
nKp, (3.21)
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where Equation (3.18) follows from Cauchy-Schwarz inequality, Equation (3.19) from
Jensen’s inequality and the orthogonality of the Gaussian variables introduced, and
Equation (3.21) from Assumption 3.15. Finally, we have:

Ĝ

(
H1,t1 ,Sn

)
≤ t1

√
Kp

n
. (3.22)

Bounding R(H′2,t,H′1,s(Sn)). Consider the following assumption.

Assumption 3.16. There exists a constant L < +∞ such that: ∀(y, y′) ∈ Rp,

Tr
(
K2(y, y)− 2K2(y, y′) +K2(y′, y′)

)
≤ L2 ‖y − y′‖2Rp .

Suppose that the OVK K2 is the sum of T decomposable kernels kt(·, ·)At such that the
scalar feature maps φt are Lt-Lipschitz and the At operators are trace class. Then, we
have: ∀(y, y′) ∈ Rp,

Tr
(
K2(y, y)− 2K2(y, y′) +K2(y′, y′)

)
=

T∑
t=1

‖φt(y)− φt(y′)‖2 Tr(At)

≤

 T∑
t=1

L2
tTr(At)

 ‖y − y′‖2Rp .
Note also that Assumption 3.16 is stronger than Assumption 3.14, since ‖A‖∗ ≤ Tr(A)
for any trace class operator A.

Let OVK K2 satisfying Assumption 3.16, and be such that H2 is separable. We then
know that there exists Ψ ∈ L(`2(N),X0) such that ∀(y, y′) ∈ Rp, K2(y, y′) = Ψ(y)Ψ∗(y′)
and ∀f2 ∈ H2, ∃v ∈ `2(N) such that f2(·) = Ψ(·)v, and ‖f2‖H2 = ‖v‖`2 . We have:

Eγ

[
sup

f2∈H2,t2

〈
γi, f2(y − f2(y′)

〉
Xn0

]

= Eγ

 sup
f2∈H2,t2

n∑
i=1

∞∑
k=1

γi,k

〈
(Ψ(yi)−Ψ(y′i))v, ek

〉
X0

 ,
= Eγ

 sup
f2∈H2,t2

〈
n∑
i=1

∞∑
k=1

γi,k(Ψ
∗(yi)−Ψ∗(y′i))ek, v

〉
`2

 ,

≤ t2

√√√√√Eγ

∥∥∥∥∥∥
n∑
i=1

∞∑
k=1

γi,k(Ψ∗(yi)−Ψ∗(y′i))ek

∥∥∥∥∥∥
2

`2

,

≤ t2

√√√√ n∑
i=1

Tr
(
K2(yi, yi)− 2K2(yi, y′i) +K2(y′i, y

′
i)

)
,

≤ t2L ‖y − y′‖Rnp ,
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where only Assumption 3.16 and arguments previously involved have been used. Finally,
we get:

R

(
H′2,t2 ,H′1,t1(Sn)

)
≤ R

(
H′2,t2 ,Rnp

)
≤ t2L. (3.23)

Bounding D
(
H′1,t1(Sn)

)
. Consider the assumption below.

Assumption 3.17. There exists κ < +∞ such that: ∀x ∈ Sn,∥∥∥K1(x, x)
∥∥∥
∗
≤ κ2.

This assumption is easily fulfilled, since X is almost surely bounded. Therefore, any
OVK that writes as the (finite) sum of decomposable kernels with continuous scalar
kernels fulfills it. Note also that it is a weaker assumption than Assumption 3.15, since
one could choose κ =

√
Kp.

Let K1 that satisfies Assumption 3.17 and (y,y′) ∈ H′1,t1(Sn). There exists functions
(f1, f

′
1) ∈ H2

1,t1
such that y = (f1(x1), . . . , f1(xn)) and y′ = (f ′1(x1), . . . , f ′1(xn)). It

holds then:∥∥∥y − y′∥∥∥2

Rnp
=

n∑
i=1

∥∥∥f1(xi)− f ′1(xi)
∥∥∥2

Rp
,

≤
n∑
i=1

(∥∥∥f1(xi)
∥∥∥
Rp

+
∥∥∥f ′1(xi)

∥∥∥
Rp

)2

,

≤
n∑
i=1

(∥∥f1

∥∥
H1

∥∥∥K1(xi, xi)
∥∥∥1/2

∗
+
∥∥∥f ′1∥∥∥H1

∥∥∥K1(xi, xi)
∥∥∥1/2

∗

)2

, (3.24)

≤ 4κ2t21n,

where Equation (3.24) follows from Equation (f) of Proposition 2.1 in Micchelli and
Pontil (2005). Finally, we get:

D

(
H′1,t1 ,Sn

)
≤ 2κt1

√
n. (3.25)

Bounding G
(
H′2,t2(0)

)
. We introduce the following assumption.

Assumption 3.18. K2(0, 0) is trace class.

Then, using the same arguments as for Equation (3.20), we get:

n G

(
H′2,t2(0)

)
≤ t2

√
n Tr

(
K2(0, 0)

)
, or G

(
H′2,t2(0)

)
≤ t2

√√√√Tr
(
K2(0, 0)

)
n

.

Rather than shifting the kernel K̃2(y, y′) = K2(y, y′) − K2(0, 0), one could consider
that Assumption 3.18 is always satisfied. In addition, we have Tr(K̃2(0, 0)) = 0 and
consequently G(H′2,t2(0)) ≤ 0.
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Final Argument

Now, combining Equations (3.7), (3.9), (3.10), (3.16), (3.22), (3.23) and (3.25) and
defining C0 := 8

√
π(C1 + 2C2), for any δ ∈]0, 1[, we have with probability at least 1− δ:

ε(ĥn)− ε∗ ≤ C0LMt1t2

√
Kp

n
+ 24M2

√
ln 2

δ

2n
.

This finishes the proof of Theorem 3.8.

Remark 3.19. The trace class assumption (Assumptions 3.7, 3.15 and 3.16) is hard to
avoid when considering Rademacher averages for vv-RKHSs. However, the often used
in practice identity decomposable kernel does not satisfy it. Therefore, another strategy
to derive generalization bounds that does not make this assumption is to use stability
tools (Bousquet and Elisseeff, 2002). Indeed, they have been extended to vv-RKHSs
in Audiffren and Kadri (2013), and to OVK Ridge Regression in particular. Gradient
Descent, even on non-convex objective functions, also fulfills some stability requirements
(Hardt et al., 2015). As shall be seen in Chapter 4, the algorithm to optimize Kernel
Autoencoders consists in an alternation of Gradient Descent steps and of OVK Ridge
Regressions for the last layer optimization. Nevertheless, the stability properties of each
algorithm cannot be transferred to their alternation (due to initialization problems in
particular). Thus, a stability analysis seems not well suited to Kernel Autoencoders.

We shall now discuss important questions that have been set aside during the exposure of
our model, among which the possibility to adapt the Kernel Autoencoder to supervised
problems, and potential hybrid architectures.

3.5 Extensions

Several important extensions and applications of Kernel Autoencoders have yet not
been addressed. It is the purpose of the present section to expose and discuss them, as
they represent interesting future research directions.

3.5.1 Supervised Extension

Along this chapter, we have assumed an Autoencoder-like framework, and one key
hypothesis is that inputs, whether kernelized or not, are equal to the outputs. This
assumption can of course be removed, without harming any aspect of the conducted
analysis.

If inputs are kernelized, but not outputs, our architecture would act as a multi-layer
standard kernel machine. Notice that this idea was already evoked in Schölkopf et al.
(1998), where it was considered giving to a Support Vector Machine the new points
representations extracted by Kernel PCA.

However, the main strength of the designed model is to handle infinite dimensional
objects both in inputs and in outputs. One can thus imagine having both kernelized
inputs φ(xi)’s and kernelized outputs ψ(yi)’s. This is the case for instance in Brouard
et al. (2016b). The goal is to identify metabolites from their mass spectra. The latter
being complex structured inputs, a natural way to process them is to use kernel methods,
or again to work on the φ(xi)’s. As explained at length in Chapter 2 (Section 2.2.2
therein), the absence of geometrical structure in the output space is tackled by first
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mapping the molecules through a feature map ψ, and learning a regression function
on the ψ(yi)’s (the predictions in the original space being recovered by solving inverse
problems). In this context, the model proposed could be interpreted as a deep version
of Input Output Kernel Regression (IOKR).

This promising research direction is currently under investigation, with the hope that
adding layers would yield numerical improvements on IOKR, so far the sate-of-the-art
method regarding metabolite identification.

3.5.2 Hybrid Architecture

Another point that could be raised is the necessity of having functions from vv-RKHSs
all along the architecture. If having a vv-RKHS at the last layer is absolutely necessary
to be able to predict infinite dimensional objects (standard neural mappings with finite
coefficient matrices and bias vectors are unable to do so), the internal functions may
perfectly pertain to other functional spaces.

Hybrid architectures sound as the perfect mixes between kernel methods and neural
implementations. They benefit both from the capacity of vv-RKHS functions to predict
kernelized data (and subsequently any structured data), and that of well studied neural
architectures that have empirically shown good performances.

Finally, notice that if the input data is an image, one can also use the work developed
in Mairal et al. (2014); Mairal (2016) for the first layers. One would end up with an
architecture specifically tailored to the needs at each step: expressive first descriptors,
powerful middle architecture, and infinite-valued last layer.

3.5.3 Learning Output Embeddings

So far, representations extracted by Kernel Autoencoders are computed in an agnostic
fashion, meaning that what the representation is used for after the extraction is never
taken into account. It is natural to consider a Kernel Autoencoder criterion with an
additive supervised criterion to make the learned representation suited to the next task.

This could be for instance a term to make representation of inputs of the same class
similar:

1

2n

n∑
i=1

‖xi − f2 ◦ f1(xi)‖2 +
1

n(n− 1)

∑
i<j

1{yi = yj}‖f1(xi)− f1(xj)‖2.

This second term writes as a U -statistic, which are extensively studied in the second
part of this manuscript.

But more classical semi-supervised criterion could also be considered:

1

2n

n∑
i=1

‖xi − f2 ◦ f1(xi)‖2 +
1

n

n∑
i=1

`
(
yi, h ◦ f1(xi)

)
.

The representation is encouraged to minimize both the reconstruction error and the
supervised empirical risk.

However, the main strength of Kernel Autoencoders is to deal with infinite dimensional
inputs/outputs. One could imagine performing exactly the same algorithm as above,
but with aim to learn an output embedding, the outputs being potentially kernelized
at the beginning.
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The IOKR regression criterion

1

n

n∑
i=1

‖h(xi)− ψ(yi)‖+
Λ

2
‖h‖2

could thus be replaced with

n∑
i=1

‖h(xi)− f1 ◦ ψ(yi)‖+
Λ

2
‖h‖2 +

1

2n

n∑
i=1

‖ψ(yi)− f2 ◦ f1 ◦ ψ(yi)‖2 + Reg(f1, f2).

The alternate approach developed in Chapter 2 to learn f1 and f2 could be readily
adapted to incorporate the learning of h into the procedure. Learning a good output
embedding is critical for the task of structured prediction, and yet not very studied. This
autoencoder-like criterion is another interesting research direction to be investigated.

3.6 Conclusion

In this chapter, we have introduced a new framework for Autoencoders, based on
vv-RKHSs and OVKs. The use of RKHS functions enables Kernel Autoencoders to
handle data from possibly infinite dimensional Hilbert spaces, and then to extend the
autoencoding scheme to any kind of data through the use of the kernel trick in the
output space. A generalization bound in terms of reconstruction error is provided, and
a connection to Kernel PCA is established. But far from being restricted to a deep
version of Kernel PCA, we have shown that Kernel Autoencoders pave the way for
many interesting applications, ranging from fully supervised vv-RKHSs networks to the
learning of output embeddings. The optimization of this model is now to be studied at
length in Chapter 4.
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In Chapter 3, we have detailed at length the Kernel Autoencoder model. In this chapter,
we focus on its optimization process. As noticed in Section 3.5, having outputs different
from the inputs does not change a single line in the analysis. The same goes for the
optimization procedure. As a consequence, for universality purposes, the subsequent
chapter is presented in the most general case where outputs differ from inputs, although
numerical experiments mainly focus on autoencoding problems.

The optimization process, as for many kernel methods, crucially relies on a Representer
Theorem. As the main tool of this chapter, this Representer Theorem, that is tailored
to composition of functions in vv-RKHSs, is stated and proved in Section 4.1. Next,
Section 4.2 focuses on the non-convexity of our problem, before and after the use of the
Representer Theorem. This essential observation has important consequences, on the
non global optimality of the solutions that may be found. The complete optimization
process, that builds on Gradient Descent, is detailed in Section 4.3 in the case where all
internal spaces are finite dimensional. When the output space is infinite dimensional, the
Gradient Descent scheme has to be alternated with Kernel Ridge Regressions to update
the last layer infinite dimensional coefficients (Section 4.4). Numerical experiments are
exposed in Section 4.5. This chapter covers the implementation contribution of:

I P. Laforgue, S. Clémençon, F. d’Alché-Buc. Autoencoding any data through kernel
autoencoders. In Proceedings of Artificial Intelligence and Statistics, 2019.
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4.1 A Representer Theorem for Composed Criteria

Representer Theorems (see Theorems 2.5 and 2.12 in Chapter 2 for instance) are critical
to the learning of kernel machines. They exhibit particular expansions of the solutions,
so that the search space is reduced from the entire (vv-)RKHS to a smaller subspace.
After a recall of the Deep Kernel Machine model in Section 4.1.1 (outputs are not
anymore assumed to be equal to outputs), the theorem dedicated to composition of
functions in vv-RKHSs is sated in Section 4.1.2.

4.1.1 The Deep Kernel Machine

As a reminder, (X,Y ) is a random variable valued in X×Y with unknown distribution P .
The sample Sn = {(xi, yi)}i≤n ∈ (X ×Y)n is composed of n i.i.d. realizations of (X,Y ).
Outputs may be embedded into a Hilbert space H through a feature map φ : Y → H.
If Y is already a Hilbert space, one may have φ = id and H = Y. The important thing
is that dot products must be easily computable in H. If φ is the canonical feature map
of a scalar kernel k defined on Y, it holds for instance 〈φ(yi), φ(yj)〉H = k(yi, yj) by
virtue of the kernel trick.

Let L ∈ N∗ and assume that there exists a collection of Hilbert spaces (Xl)1≤l≤L, such
that XL = H. For l ≤ L − 1, the space Xl is supposed to be endowed with an OVK
Kl+1 : Xl × Xl → L(Xl+1), associated to a vv-RKHS Hl+1 ⊂ F(Xl,Xl+1). Finally,
H1 ⊂ F(X ,X1) is a vv-RKHS associated to an OVK K1. The Deep Kernel Machine
problem then writes

min
fl∈Hl, l≤L

1

2n

n∑
i=1

∥∥∥φ(yi)− fL ◦ . . . ◦ f1(xi)
∥∥∥2

H
+

L∑
l=1

Λl
2
‖fl‖2Hl , (4.1)

with (Λl)l≤L ∈ RL+ a collection of regularization parameters.

We now states a Representer Theorem, that applies to the composition framework of
Problem (4.1).

4.1.2 Theorem Statement

This theorem, like the standard vv-Representer Theorem, relies on Minimum Norm
Interpolation results, see Theorem 2.12 in Chapter 2. It exhibits a very specific structure
for the minimizers, as each layer’s support vectors are the images of the original points
by the previous one.

Theorem 4.1. Let L0 ≤ L, and V : X nL0
× RL0

+ → R a function of n + L0 variables,
strictly increasing in each of its L0 last arguments. Suppose that (f∗1 , . . . , f

∗
L0

) is a
solution to the optimization problem:

min
fl∈Hl

V

(
(fL0 ◦ . . . ◦ f1)(x1), . . . , (fL0 ◦ . . . ◦ f1)(xn), ‖f1‖H1 , . . . , ‖fL0‖HL0

)
.

For i ≤ n and l ≤ L, let x∗i (l) = f∗l ◦ . . .◦f∗1 (xi), with the notation convention x∗i
(0) = xi.

Then, there exist
(
ϕ∗1,1, . . . , ϕ

∗
1,n, . . . , ϕ

∗
L0,n

)
∈ X n1 × . . .×X nL0

such that

∀ l ≤ L0, f∗l (·) =
n∑
i=1

Kl
(
· , x∗i (l−1)

)
ϕ∗l,i.
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Proof. For simplicity, we shall use the following shortcut notation:

ξ(f∗1 , . . . ,f
∗
L0
,Sn)

= V

(
(fL0 ◦ . . . ◦ f1)(x1), . . . , (fL0 ◦ . . . ◦ f1)(xn), ‖f1‖H1 , . . . , ‖fL0‖HL0

)
.

Let l0 ≤ L0. Let gl0 ∈ Hl0 such that :

gl0

(
x∗i

(l0−1)
)

= f∗l0

(
x∗i

(l0−1)
)
, for all i ≤ n.

By definition, we have :

ξ(f∗1 , . . . , f
∗
l0 , . . . , f

∗
L0
,Sn) ≤ ξ(f∗1 , . . . , gl0 , . . . , f∗L0

,Sn),

thus we necessarily have :
‖f∗l0‖2Hl0 ≤ ‖gl0‖

2
Hl0

.

Therefore f∗l0 is a solution to the problem :

min
f∈Hl0

‖f‖Hl0 ,

s.t. f
(
x∗i

(l0−1)
)

= f∗l0

(
x∗i

(l0−1)
)
, i ≤ n,

By Theorem 2.12, there exists
(
ϕ∗l0,1, . . . , ϕ

∗
l0,n

)
∈ X nl0 , such that :

f∗l0(·) =
n∑
i=1

Kl0
(
· , x∗i (l0−1)

)
ϕ∗l0,i.

Remark 4.2. An important remark to make is that conditions on V are very loose.
Indeed, no convexity assumption is made on V for instance, what perfectly matches
Problem (4.1) (see in particular Section 4.2). The criterion should only depend on the
composition of the vv-RKHS functions evaluations, and increasingly with respect to the
norms, exactly as in Problem (4.1). This generality makes it possible to encompass
all Deep Kernel Machines problems. Notice that simultaneously to the statement in
Laforgue et al. (2019a), a similar result has been established in Bohn et al. (2019) (see
Theorem 1 therein).

Remark 4.3. A second important thing to notice is that in general L0 may be different
from L. Although surprising at first sight, this remark becomes crucial when addressing
optimization issues. Indeed, to address the infinite dimensionality of the last layer’s
coefficients, one is encouraged to proceed using an alternate descent that sometimes
freezes part of the layers. With the flexibility over L0, the Representer Theorem stated
in Theorem 4.1 remains valid all the time, no matter the layers frozen.

The Representer Theorem 4.1 thus transforms the optimization over the collection of
Hilbert spaces (Hl)l≤L into an optimization over the intermediate spaces (X nl )l≤L. This
opens the door to a Gradient Descent resolution, with parameters the set of coefficients
(ϕl,i) for l ≤ L and i ≤ n. However, the compositions of functions in Problem (4.1)
make the objective function highly non-convex. As a consequence, the solution found
by a Gradient Descent strategy may always be locally optimal only. The non-convexity
of the criterion is further addressed in the next section.
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4.2 Non-Convexity of the Problem

Gradient Descent strategies are among the most used optimization methods in Machine
Learning. However, they find a minimizer of the objective by finding a point canceling its
gradient. When the objective is not convex, this implies that the solution approximately
computed by the algorithm may be only locally optimal. Therefore, checking whether
the objective function minimized is convex or not is one of the first check needed before
proceeding with the algorithm per se in Sections 4.3 and 4.4.

4.2.1 Functional Setting

We show the non-convexity of Problem (4.1) in general by showing its non-convexity in
a very specific case. Let L = 2, X = X1 = Y = H = R, n = 1, and x1 = y1 = 1. Further
assume that both kernels are linear : K1(x, x′) = xx′, K2(z, z′) = zz′. By Theorem 4.1,
we have the existence of ϕ1 and ϕ2 such that

f1 : x 7→ K1(x, x1)ϕ1 = ϕ1x,

f2 : z 7→ K2(z, f(x1))ϕ2 = ϕ2f1(x1)z.

Let P : H1 × H2 → R the application mapping two candidate functions to the value
of Problem (4.1)’s objective with the specific choices stated above. Functions f1 and
f2 depending only on ϕ1 and ϕ2, let Q : R × R → R the application mapping to the
same values as P, but with inputs ϕ1 and ϕ2. In the following subsection we show that
convexity of Q does not even hold, that allows to conclude that convexity of P does not
hold either.

4.2.2 Parametric Setting

As a reminder, we have :

f1(x) = K1(x, x1)ϕ1 = ϕ1x, f(x1) = ϕ1,

f2(z) = K2(z, f1(x1))ϕ2 = ϕ1ϕ2z, f2(f1(x1)) = ϕ2
1ϕ2.

Our problem reads :

min
ϕ1,ϕ2∈R2

Q(ϕ1, ϕ2) =
1

2

(
1− ϕ2

1ϕ2

)2
+

Λ1

2
ϕ2

1 +
Λ2

2
ϕ2

2,

or equivalently :
min

ϕ1,ϕ2∈R2
1 + Λ1ϕ

2
1 + Λ2ϕ

2
2 − 2ϕ2

1ϕ2 + ϕ4
1ϕ

2
2.

Let us find the critical points and analyze them. We have :
∂Q
∂ϕ1

(ϕ1, ϕ2) = 2Λ1ϕ1 − 4ϕ1ϕ2 + 4ϕ3
1ϕ

2
2,

∂Q
∂2ϕ1

(ϕ1, ϕ2) = 2Λ1 − 4ϕ2 + 12ϕ2
1ϕ

2
2,

∂Q
∂ϕ2

(ϕ1, ϕ2) = 2Λ2ϕ2 − 2ϕ2
1 + 2ϕ4

1ϕ2,

∂Q
∂2ϕ2

(ϕ1, ϕ2) = 2Λ2 + 2ϕ4
1,

∂Q
∂ϕ1∂ϕ2

(ϕ1, ϕ2) = −4ϕ1 + 8ϕ3
1ϕ2.
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Figure 4.1 – Heatmaps of Q for different values of Λ1 and Λ2

The two following equivalence relationships hold true:
∂Q
∂ϕ1

(ϕ∗1, ϕ
∗
2) =

(
2Λ1 − 4ϕ∗2 + 4ϕ∗1

2ϕ∗2
2
)
ϕ∗1 = 0 ⇔ ϕ∗1 = 0 or ϕ∗1

2 =
2ϕ∗2 − Λ1

2ϕ∗2
2 ,

∂Q
∂ϕ2

(ϕ∗1, ϕ
∗
2) = 2Λ2ϕ

∗
2 − 2ϕ∗1

2 + 2ϕ∗1
4ϕ∗2 = 0 ⇔ ϕ∗2 =

ϕ∗1
2

ϕ∗1
4 + Λ2

.

Obviously, the point (ϕ∗1, ϕ
∗
2) = (0, 0) is always critical. Notice that :

Hess(0,0)Q =

(
2Λ1 0

0 2Λ2

)
� 0.

Thus (0, 0) is a local minimum with value Q(0, 0) = 1. To prove that it is not a global
minimizer, it is enough to find a couple (ϕ1, ϕ2) such that Q(ϕ1, ϕ2) < 1. For example
Q(1, 1) = (Λ1 + Λ2)/2. As soon as Λ1 + Λ2 < 2, the objective Q is not invex, and a
fortiori non-convex.

Figure 4.1 shows the heatmaps ofQ with respect to ϕ1 and ϕ2 for different regularization
settings. Note that in the non-regularized setting (Λ1 = Λ2 = 0), every point (0, ϕ2)
with ϕ2 < 0 is a local minimizer but not a global one. They are represented by red
crosses. On the other hand, we have also an infinite number of global minima, namely
every couple satisfying ϕ2

1ϕ2 = 1. See the black crosses on the top left figure. When
the regularization parameters remain small enough, (0, 0) is a local minimizer but not
a global one (top right figure). Finally, the higher the regularization, the smoother the
objective, even if convexity can never be verified (bottom figures).
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4.3 Finite Dimensional Gradient Descent

Although Section 4.2 shows the non-convexity of Problem (4.1), Theorem 4.1 encourages
to proceed with a Gradient Descent scheme, as functions are now fully parametrized
by the coefficients (ϕl,i), l ≤ L and i ≤ n. As a reminder, coefficients ϕl,i are valued
in Xl for i ≤ n. Therefore, a condition for Gradient Descent to be computable (and
that was not necessary to the statement of Theorem 4.1) is that all intermediate spaces
Xl, including H must be finite dimensional. The case where the final output space is
infinite dimensional is addressed in Section 4.4. Breaking with Section 4.2, we are back
in the general case with L layers. For l ≤ L, we assume that there exists dl ∈ N∗ such
that Xl = Rdl .

4.3.1 A Gradient Descent Scheme

The objective function of Problem (4.1), viewed as a function of (fL ◦ . . . ◦ f1)(x1), . . . ,
(fL ◦ . . . ◦ f1)(xn), ‖f1‖H1 , . . . , ‖fL‖HL satisfies the condition on V needed to establish
Theorem 4.1. After applying it (with L0 = L), Problem (4.1) boils down to the problem
of finding the ϕ∗l,i’s, which are finite dimensional. This crucial observation shows that
our problem can be solved in a computable manner, although its convexity still cannot
be ensured (see Section 4.2).

The objective only depending on the ϕl,i’s, Problem (3.3) can be approximately solved
by Gradient Descent (GD). We now specify the gradient derivation in the decomposable
OVKs case, i.e. for any l ≤ L we assume that there exists a scalar kernel kl : Xl×Xl → R,
and Al ∈ L(Xl+1) positive semidefinite such that Kl(x, x′) = kl(x, x

′)Al. For l ≤ L, let
Φl = (ϕl,1, . . . , ϕl,n)> ∈ Rn×dl storing the coefficients ϕl,i in rows, and Kl ∈ Rn×n such
that

[
Kl

]
i,i′

= kl(x
(l−1)
i , x

(l−1)
i′ ), with Theorem 4.1’s notation: x(l)

i = fl◦fl−1◦. . .◦f1(xi)
for i ≤ n and l ≤ L. Let l0 ≤ L and i0 ≤ n, the gradient of the distortion term reads:

∇ϕl0,i0 1

2n

n∑
i=1

∥∥∥φ(yi)− fL ◦ . . . ◦ f1(xi)
∥∥∥2

H

> (4.2)

= − 1

n

n∑
i=1

(
φ(yi)− xi(L)

)>
Jacxi(L)(ϕl0,i0).

On the other hand, ‖fl‖2Hl may be rewritten as:

‖fl‖2Hl =
〈
fl, fl

〉
Hl
,

=

〈
n∑
i=1

Kl
(
·, xi(l−1)

)
ϕl,i ,

n∑
i′=1

Kl
(
·, xi′ (l−1)

)
ϕl,i′

〉
Hl

,

=

n∑
i,i′=1

〈
Kl
(
·, xi(l−1)

)
ϕl,i , Kl

(
·, xi′ (l−1)

)
ϕl,i′

〉
Hl
,

=

n∑
i,i′=1

〈
ϕl,i , Kl

(
xi

(l−1), xi′
(l−1)

)
ϕl,i′

〉
Xl
,

=

n∑
i,i′=1

kl

(
xi

(l−1), xi′
(l−1)

)〈
ϕl,i , Al ϕl,i′

〉
Xl
.
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So that ‖fl‖2Hl may depend on ϕl0,i0 in two ways: 1) if l0 = l, there is a direct dependence
of the second quadratic term, 2) but note also that for l0 < l, the ϕl0,i have an influence
on the xi(l−1) and so on the first term. This remark leads to the following formulas:

∇Φl ‖fl‖2Hl = 2 KlΦlAl, (4.3)

with ∇ΦlF :=
(
∇ϕl,1F, . . . ,∇ϕl,nF

)>
∈ Rn×dl storing the gradients of any real-valued

function F with respect to the ϕl,i in rows.

And when l0 < l, it holds:(
∇ϕl0,i0 ‖fl‖

2
Hl

)>
=

n∑
i,i′=1

[Nl]i,i′

(
∇ϕl0,i0 kl

(
xi

(l−1), xi′
(l−1)

))>
,

=

n∑
i,i′=1

[Nl]i,i′

[ (
∇(1)kl

(
xi

(l−1), xi′
(l−1)

))>
Jacxi(l−1)(ϕl0,i0)

+

(
∇(2)kl

(
xi

(l−1), xi′
(l−1)

))>
Jacxi′ (l−1)(ϕl0,i0)

]
,

=
n∑

i,i′=1

[Nl]i,i′

(
∇(1)kl

(
xi

(l−1), xi′
(l−1)

))>
Jacxi(l−1)(ϕl0,i0)

+

n∑
i′,i=1

[Nl]i′,i

(
∇(1)kl

(
xi′

(l−1), xi
(l−1)

))>
Jacxi′ (l−1)(ϕl0,i0),

= 2
n∑

i,i′=1

[Nl]i,i′

(
∇(1)kl

(
xi

(l−1), xi′
(l−1)

))>
Jacxi(l−1)(ϕl0,i0),

(4.4)

where∇(1)kl(x, x
′), respectively∇(2)kl(x, x

′), denote the gradients of kl(·, ·) with respect
to the first (respectively second) coordinate and evaluated in (x, x′), and Nl the n× n
matrix such that [Nl]i,i′ = 〈ϕl,i, Alϕl,i′〉Xl .
Assuming that the Jacobian matrices Jacxi(L)(ϕl0,i0) are known (their computation is
detailed in Section 4.3.2), the norm part of the gradient is computable, and combining
Equations (4.2) to (4.4) using the linearity of the gradient yields the complete formula.

Remark 4.4. If n, L, and p denote respectively the number of samples, the number of
layers, and the size of the largest latent space, the algorithm complexity is no more than
O(n2Lp) for objective evaluation, and O(n3L2p3) for gradient derivation. Hence, it
appears natural to consider stochastic versions of GD. But as shown by Equation (4.4),
the norms gradients involve the computation of many Jacobians. Selecting a mini-batch
does not affect these terms, which are the most time consuming. Thus, the expected
acceleration due to stochasticity must not be so important. But a doubly stochastic
scheme inspired from Dai et al. (2014), where both the points on which the objective
is evaluated, as well as the coefficients to be updated, are chosen randomly at each
iteration, might be of high interest since it would dramatically decrease the number of
Jacobians computed. This approach, potentially combined with kernel approximations
such as Nyström’s method (Williams and Seeger, 2001) or Random Fourier Features
(Rahimi and Recht, 2008; Brault et al., 2016) constitute a promising research direction
to decrease the computational cost of the procedure.
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We now detail how the Jacobian matrices can be computed in an efficient fashion.

4.3.2 Detail of Jacobians Computation

All previously written gradients involve Jacobian matrices. Their computation is to be
detailed now. First notice that Jacxi(l)(ϕl0,i0) only makes sense if l0 ≤ l. Indeed, xi(l)

is completely independent from ϕl0,i0 otherwise. Let us first detail xi(l) and use the
linearity of the Jacobian operator :

Jacxi(l)(ϕl0,i0) =
n∑

i′=1

Jac
kl

(
xi(l−1),xi′

(l−1)
)
Al ϕl,i′

(ϕl0,i0).

Just as in the norm gradient case, there are two different outputs depending on whether
l = l0 (this gives an initialization), or l > l0 (this leads to a recurrence formula).

Own Jacobian (l = l0) :

Jacxi(l)(ϕl,i0) =
n∑

i′=1

Jac
kl

(
xi(l−1),xi′

(l−1)
)
Al ϕl,i′

(ϕl,i0),

=
n∑

i′=1

kl

(
xi

(l−1), xi′
(l−1)

)
JacAl ϕl,i′ (ϕl,i0),

= [Kl]i,i0 Al. (4.5)

Higher order Jacobian (l > l0) :

Jacxi(l)(ϕl0,i0) =

n∑
i′=1

Jac
kl

(
xi(l−1),xi′

(l−1)
)
Al ϕl,i′

(ϕl0,i0),

=
n∑

i′=1

Al ϕl,i′

(
∇ϕl0,i0 kl

(
xi

(l−1), xi′
(l−1)

))>
,

= Al

n∑
i′=1

ϕl,i′

[ (
∇(1)kl

(
xi

(l−1), xi′
(l−1)

))>
Jacxi(l−1)(ϕl0,i0)

+

(
∇(1)kl

(
xi′

(l−1), xi
(l−1)

))>
Jacxi′ (l−1)(ϕl0,i0)

]
,

= Al

 n∑
i′=1

ϕl,i′

(
∇(1)kl

(
xi

(l−1), xi′
(l−1)

))>Jacxi(l−1)(ϕl0,i0)

+Al

 n∑
i′=1

ϕl,i′

(
∇(1)kl

(
xi′

(l−1), xi
(l−1)

))>
Jacxi′ (l−1)(ϕl0,i0)

 ,
Jacxi(l)(ϕl0,i0) = Al

Φ>l ∆l

(
xi

(l−1)
)
Jacxi(l−1)(ϕl0,i0) (4.6)

+
n∑

i′=1

ϕl,i′

(
∇(1)kl

(
xi′

(l−1), xi
(l−1)

))>
Jacxi′ (l−1)(ϕl0,i0)

,
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with ∆l(x) =
(
∇(1)kl

(
x, x1

(l−1)
)
, . . . ,∇(1)kl

(
x, xn

(l−1)
))>

the n×dl−1 matrix storing

the ∇(1)kl

(
x, xi

(l−1)
)
in rows. These matrices are further explicited for popular kernels,

especially at the interesting point x = xi
(l−1).

Assuming the ∆l(x) matrices are known, we have an expression of Jacxi(l)(ϕl0,i0) that
only depends on the Jacxi′ (l−1)(ϕl0,i0). Thus we can unroll the recurrence formula
obtained in Equation (4.6) until l = l0, where Equation (4.5) is used. This gives a
general way to recursively compute the Jacobian matrices. Notice that, similarly to a
backpropagation, the recursive computation of Jacobians of higher order (i.e. difference
between l and l0) makes it memory efficient as lower order matrices are discarded
progressively.

Remark 4.5. An interesting remark can be made about the two-terms structure of the
recursive relationship established in Equation (4.6). Indeed, the first term corresponds to
the chain rule on xi(l) = fl(xi

(l−1)) assuming that fl is constant: ∂fl(xi(l−1))/∂ϕl0,i0 =
∂fl(xi

(l−1))/∂xi
(l−1) · ∂xi(l−1)/∂ϕl0,i0 (with notation abuse on ∂ in order to preserve

understandability). In opposition, the second term corresponds to a chain rule assuming
that xi(l−1) does not vary with ϕl0,i0, but that fl does, through the influence of ϕl0,i0 on
the supports of fl, namely the xi′ (l−1).

We now detail the matrices ∆(x) computations for popular kernels.

Detail of the ∆l Matrices Computations.

In this section we derive the quantities ∇(1)kl

(
xi

(l−1), xi′
(l−1)

)
and more specifically

the matrices ∆l(xi
(l−1)) for l ≤ L and i ≤ n. Notice that all previously computed

quantities are independent from the kernel chosen. Actually, the ∆l(xi
(l−1)) matrices

encapsulate all the kernel specificity of the algorithm. Thus, tailoring a new algorithm
by changing the kernels only requires computing the new ∆l matrices. This flexibility
is a key asset of our approach, and more generally a crucial characteristic of kernel
methods. In the following, we describe the ∆l derivation for two popular kernels : the
Gaussian and the polynomial ones.

Gaussian kernel :

∇(1)kl(x, x
′) = ∇x

(
exp

(
−γl‖x− x′‖2Xl−1

))
= −2γl e

−γl‖x−x′‖2Xl−1 (x− x′).

∆l

(
xi

(l−1)
)

=

[
∇(1)kl

(
xi

(l−1), x1
(l−1)

)
, . . . ,∇(1)kl

(
xi

(l−1), xn
(l−1)

)]>
,

= −2γl

[
e
−γl

∥∥∥xi(l−1)−x1
(l−1)

∥∥∥2

Xl−1

(
xi

(l−1) − x1
(l−1)

)
, . . .

. . . , e
−γl

∥∥∥xi(l−1)−xn(l−1)
∥∥∥2

Xl−1

(
xi

(l−1) − xn(l−1)
)]>

,

= −2γl K̃l,i ◦
(
X̃

(l−1)
i −X(l−1)

)
,
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where:
• X(l−1) =

(
x1

(l−1), . . . , xn
(l−1)

)>
∈ Rn×dl−1 stores the level l − 1 representations

of the xi’s in rows

• X̃(l−1)
i =

(
xi

(l−1), . . . , xi
(l−1)

)>
∈ Rn×dl−1 stores the level l − 1 representation

of xi n times in rows

• K̃l,i ∈ Rn×n is the kl Gram matrix between X(l−1) and X̃
(l−1)
i

(
i.e. [K̃l,i]s,t =

kl

(
xi

(l−1), xt
(l−1)

))
• ◦ denotes the Hadamard (termwise) product for two matrices of the same shape

In practice, it is important to note that computing the ∆l matrices with the Gaussian
kernel needs not new calculations, but only uses already computed quantities : the level
l − 1 representations and their Gram matrix.

Polynomial kernel :

∇(1)kl(x, x
′) = ∇x

(
a〈x, x′〉+ b

)c
= ca

(
a〈x, x′〉+ b

)c−1
x′.

∆l

(
xi

(l−1)
)

=

[
∇(1)kl

(
xi

(l−1), x1
(l−1)

)
, . . . ,∇(1)kl

(
xi

(l−1), xn
(l−1)

)]>
,

= ca

[(
a
〈
xi

(l−1), x1
(l−1)

〉
+ b

)c−1

x1
(l−1), . . .

. . . ,

(
a
〈
xi

(l−1), xn
(l−1)

〉
+ b

)c−1

xn
(l−1)

]>
,

∆l

(
xi

(l−1)
)

= ca
(
K̃l,i

) c−1
c ◦X(l−1),

where we keep the notations introduced in the Gaussian kernel example for X(l−1), K̃l,i

and ◦. Note that the exponent on K̃l,i must be understood as a termwise power, and
not a matrix multiplication power.

In practice, it is important to notice that computing the ∆l matrices with the polynomial
kernel only requires a slight and cheap new calculation : putting the - already computed -
Gram matrix at layer l − 1 to the termwise power (c− 1)/c.

With this last derivation, we finish to show that a Gradient Descent strategy can be
considered to learn Deep Kernel Machines solving Problem (4.1) when all spaces are
finite dimensional. We now turn to the more involved case where the outputs φ(yi)’s are
infinite dimensional. If a similar Gradient Descent approach can be performed for the
inner layers coefficients (the gradient easily passes through the last infinite dimensional
layer), an alternative Kernel Ridge Regression resolution is needed to update the last
layer’s coefficients.
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4.4 General Hilbert Space Resolution

Assume that outputs yi’s are embedded through the canonical feature map associated to
the Gaussian kernel. Then, every φ(yi), so as any element in H, is infinite dimensional.
This prevents from the use of a global Gradient Descent strategy, as the final layer’s
coefficients are valued in H, and cannot be stored for instance. Instead, a procedure
alternating Gradient Descent and Kernel Ridge Regression must be designed. It is the
purpose of this section to expose it.

4.4.1 An Alternate Approach

In this section, H, the space where outputs yi’s are embedded through φ is supposed
to be infinite dimensional. In spite of this relaxation, Kernel Autoencoders remain
computable. As Theorem 4.1 makes no assumption on the dimensionality of XL = H,
it can be applied. The only difference is that coefficients ϕL,i’s ∈ X nL are infinite
dimensional, preventing from the use of a global Gradient Descent.

Nevertheless, if the ϕL,i’s are assumed to be fixed, a Gradient Descent (GD) can still
be performed on the ϕl,i’s, for l ≤ L − 1. On the other hand, if one assumes these
coefficients frozen, the optimal ϕL,i’s are the solutions to a Kernel Ridge Regression
(KRR) problem.

Consequently, a hybrid approach alternating GD and KRR is considered. Two issues
remain to be addressed:

1. How to compute the KRR in the infinite dimensional space XL?

2. How to propagate the gradients through XL?

From now, AL is assumed to be the identity operator on H = XL.
Answer to Question 1). If the ϕl,i’s, l ≤ L − 1 are fixed, then the best ϕL,i’s shall
satisfy for all i ≤ n (Micchelli and Pontil, 2005):

n∑
i′=1

(
KL
(
xi

(L−1), xi′
(L−1)

)
+ nΛLδii′

)
ϕL,i′ = φ(yi). (4.7)

This equality makes it easy to compute the NL matrix. Indeed, it holds〈
φ(yj), φ(yj′)

〉
H

=

〈 n∑
i=1

(
KL
(
x

(L−1)
j , x

(L−1)
i

)
+ nΛLδij

)
ϕL,i ,

n∑
i′=1

(
KL
(
x

(L−1)
j′ , x

(L−1)
i′

)
+ nΛLδi′j′

)
ϕL,i′

〉
X0

,

=

n∑
i,i′=1

〈(
kL

(
x

(L−1)
j , x

(L−1)
i

)
+ nΛLδij

)
ϕL,i ,(

kL

(
x

(L−1)
j′ , x

(L−1)
i′

)
+ nΛLδi′j′

)
ϕL,i′

〉
X0

,

k(yj , yj′) =
n∑

i,i′=1

(
kL

(
x

(L−1)
j , x

(L−1)
i

)
+ nΛLδij

)
(4.8)

(
kL

(
x

(L−1)
j′ , x

(L−1)
i′

)
+ nΛLδi′j′

)〈
ϕL,i, ϕL,i′

〉
X0

.
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With the notation KY ∈ Rn×n such that KY
jj′ = k(yj , yj′), Equation (4.8) is equivalent

to

KY
jj′ =

n∑
i,i′=1

[KL + nΛLIn]ji[NL]ii′ [KL + nΛLIn]i′j ,

or equivalently:
KY = (KL + nΛLIn) NL (KL + nΛLIn),

so that NL is given by

NL = (KL + nΛLIn)−1 KY (KL + nΛLIn)−1. (4.9)

Since KL is recursively derived from KX , Φ1, . . . ,ΦL−1, the optimal matrix NL (in
the sense of the Kernel Ridge Regression) only depends on KX , KY , the coefficient
matrices, and the last layer regularization parameter ΛL. Let NKRR be the function
that computes NL of Equation (4.9) from KX , KY , Φ1, . . . ,ΦL−1, and ΛL.

Thus, we have seen that the resolution of the KRR easily translates into a closed form
solution for NL. Remarkably, only this computable quantity is needed to propagate the
gradient through the infinite dimensional layer. This shall answer Question 2).

Answer to Question 2). Assume that the coefficients ϕL,i’s are frozen. As detailed in
Section 4.3, the total gradient of the objective is the (weighted) sum of Equations (4.2)
to (4.4). Equation (4.3) features no quantity depending on the last layer: it remains
unchanged. Equation (4.4) changes for l = L. It then only requires the knowledge
of the [NL]ij = 〈ϕL,i, ϕL,j〉, which has been established by Equation (4.9). However,
Equation (4.2) involves JacxLi

(ϕl0,i0), which does not make sense anymore since XL is
now infinite dimensional. Nevertheless, ϕl,i is finite dimensional, and the distortion is
a scalar: a gradient does exist. One is just forced to use the differential operator of
‖φ(yi)− fL ◦ . . . ◦ f1(xi)‖2H to make it appear.

As a reminder, the chain rule for differentials reads : d(g ◦ f)(x) = dg(f(x)) ◦ df(x).
Let us apply it with g(·) = ‖ · ‖2H and f : ϕl0,i0 7→ φ(yi)− x(L)

i . Let h ∈ Xl0 and h′ ∈ H.
It holds: (

dg(y)
)

(h′) = 2
〈
y, h′

〉
H
,

and (
df(ϕl0,i0)

)
(h) =

(
d

(
xi −

n∑
i′=1

kL

(
x

(L−1)
i , x

(L−1)
i′

)
ϕL,i′

)
(ϕl0,i0)

)
(h),

= −
n∑

i′=1

(
d

(
kL

(
x

(L−1)
i , x

(L−1)
i′

)
ϕL,i′

)
(ϕl0,i0)

)
(h),

= −
n∑

i′=1

(
d

(
kL

(
x

(L−1)
i , x

(L−1)
i′

))
(ϕl0,i0)

)
(h) ϕL,i′ ,

= −
n∑

i′=1

〈
∇ϕl0,i0kL

(
x

(L−1)
i , x

(L−1)
i′

)
, h
〉
H
ϕL,i′ .
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Combining both expressions with y = φ(yi)− x(L)
i gives:(

d(‖φ(yi)− fL ◦ . . . ◦ f1(xi)‖2X0
)(ϕl0,i0)

)
(h)

=

(
d(g ◦ f)(ϕl0,i0)

)
(h),

=

(
dg

(
φ(yi)− x(L)

i

))
◦
(
df(ϕl0,i0)

)
(h),

= 2

〈
φ(yi)− x(L)

i ,−
n∑

i′=1

〈
∇ϕl0,i0kL

(
x

(L−1)
i , x

(L−1)
i′

)
, h

〉
Xl0

ϕL,i′

〉
H

,

= −2
n∑

i′=1

〈
∇ϕl0,i0kL

(
x

(L−1)
i , x

(L−1)
i′

)
, h

〉
Xl0

〈
φ(yi)− x(L)

i , ϕL,i′

〉
H
,

=

〈
−2

n∑
i′=1

〈
φ(yi)− x(L)

i , ϕL,i′

〉
H
∇ϕl0,i0kL

(
x

(L−1)
i , x

(L−1)
i′

)
, h

〉
Xl0

.

A direct identification gives.

∇ϕl0,i0
∥∥∥φ(yi)− x(L)

i

∥∥∥2

H
= −2

n∑
i′=1

〈
φ(yi)− x(L)

i , ϕL,i′
〉
H
∇ϕl0,i0kL

(
x

(L−1)
i , x

(L−1)
i′

)
.

(4.10)

Using Equation (4.7), that may also be written nΛLϕL,i = φ(yi)−x(L)
i , Equation (4.10)

simplifies into

∇ϕl0,i0
∥∥∥φ(yi)− x(L)

i

∥∥∥2

H
= −2nΛL

n∑
i′=1

[NL]ii′∇ϕl0,i0kL
(
x

(L−1)
i , x

(L−1)
i′

)
. (4.11)

Again, only computable or known quantities are involved. The gradient of the full
criterion being just the weighted sum of the gradients of the distortion and the norm
penalizations, we have thus shown that ifNL is fixed (and known), it is easy to propagate
the gradient through the infinite dimensional layer.

Design of the Algorithm. The approach is natural. First freeze the last layer’s
coefficients (and consequently NL). The gradient may be easily propagated. We use
the shortcut notation ∇Φl

(
ε̂n + Ω | NL

)
in Algorithm 4.1 to denote the gradient of the

entire criterion with respect to Φl, assuming that NL is fixed. After one gradient step,
Φ1, . . . ,ΦL−1 are in turn frozen. The optimal ϕL,i are then given by the KRR, which
results in an update of NL. Recall that NKRR denotes the function that return the
optimal KRR NL matrix from KX , KY , Φ1, . . . ,ΦL−1, and ΛL. Let T be a number of
epochs, and γt a step size rule, the approach is summarized in Algorithm 4.1.

Remark 4.6. The crux of the algorithm is that infinite dimensional coefficients ϕL,i’s
are never computed, but only their scalar products. For a Kernel Autoencoder, not
knowing the ϕL,i’s is of no importance, as we are interested in the encoding function,
which does not rely on them. Yet, one would not have direct access to the reconstructed
inputs, but only to their discrepancy with respect to original inputs.
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Algorithm 4.1 General Hilbert Deep Kernel Machine

input : Gram matrices KX , KY

init : Φ1 = Φinit
1 , . . . ,ΦL−1 = Φinit

L−1, NL = NKRR

(
KX ,KY ,Φ1, . . . ,ΦL−1,ΛL

)
1 for epoch t from 1 to T do

// inner coefficients updates at fixed NL

2 for layer l from 1 to L− 1 do

3 Φl = Φl − γt ∇Φl

(
ε̂n + Ω | NL

)
// NL update

4 NL = NKRR

(
KX ,KY ,Φ1, . . . ,ΦL−1, λL

)
5 return Φ1, . . . ,ΦL−1, NL

Remark 4.7. We highlight the fact that, if another update formula were available for
NL, then Algorithm 4.1 could be readily adapted. One could for instance imagine that
NL is not associated to the KRR minimizer, but to another criterion minimizer, such as
the ε-insensitive Ridge regression, or the Hubert regression. If NL then does not admit
a closed form solution, the exact computation may be replaced by one iteration of an
approximation algorithm. Attention should also be paid to the fact that changing the
criterion may also change the gradient formula. This possibilities are investigated in
Chapter 5.

Remark 4.8. As shall be seen in Chapter 5, and as highlighted by Equation (4.13), in
many cases, the optimal coefficients ϕL,i are actually linear combinations of the outputs
φ(yi). Denoting by W the n × n weight matrix such that ϕL,i =

∑
j wijφ(yj), the last

layer is fully characterized by W , which is finite dimensional. One can then consider a
global Gradient Descent on Φ1, . . . ,ΦL−1,W .

The next section makes explicit the computation of the test distortion.

4.4.2 Test Distortion Computation

As previously highlighted, the final layer’s coefficients are never computed explicitly.
Yet, test distortion may always be computed, as long as dot products between the
(kernelized) outputs 〈φ(ytest), φ(ytrain)〉 = k(ytest, ytrain) are known.

Since we have assumed that AL is the identity operator on XL, Equation (4.7) simplify
to:

∀ i ≤ n,
n∑

i′=1

Wii′ ϕL,i′ = φ(yi), (4.12)

where W = KL + nΛLIn. It is then easy to show that the

ϕL,i′ =
n∑
i=1

[
W−1

]
i′i

φ(yi) ∀ i′ ≤ n (4.13)

are solutions to Equation (4.12) and therefore to Equation (4.7). Notice that using this
expansion directly leads to Equation (4.9). But more interestingly, this new writing
allows for computing the distortion on a test set.
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Indeed, let x, φ(y) ∈ X ×H = XL, one has:∥∥∥φ(y)− fL ◦ . . . ◦ f1(x)
∥∥∥2

H

=

∥∥∥∥φ(y)− fL
(
x(L−1)

)∥∥∥∥2

H
,

= k(y, y) +

∥∥∥∥fL (x(L−1)
)∥∥∥∥2

H
− 2

〈
φ(y), fL

(
x(L−1)

)〉
H
,

= k(y, y) +

∥∥∥∥∥∥
n∑
i=1

kL

(
x(L−1), x

(L−1)
i

)
ϕL,i

∥∥∥∥∥∥
2

H

− 2

〈
φ(y),

n∑
i=1

kL

(
x(L−1), x

(L−1)
i

)
ϕL,i

〉
H

,

= k(y, y) +
n∑

i,j=1

kL

(
x(L−1), x

(L−1)
i

)
kL

(
x(L−1), x

(L−1)
j

)〈
ϕL,i, ϕL,j

〉
H

− 2
n∑
i=1

kL

(
x(L−1), x

(L−1)
i

)〈
φ(y), ϕL,i

〉
H
,

= k(y, y) +
n∑

i,j=1

vi[NL]ijvj − 2
n∑

i,j=1

vi

[
W−1

]
i,j

〈
φ(y), φ(yj)

〉
H
,

= k(y, y) + v>NLv − 2v>W−1u,

with v the Rn vector such that its ith entry is equal to vi = kL(x(L−1), x
(L−1)
i ), and u

the counterpart for the 〈φ(y), φ(yj)〉H. Just like in Section 4.4, knowing only the scalar
products in the infinite dimensional space is enough to compute the test distortion, all
other quantities involved being finite dimensional and thus naturally computable.

We now close this chapter by presenting some experimental results.

4.5 Numerical Experiments

Numerical experiments have been run in order to highlight the capacity of Kernel
Autoencoders to extract relevant data representations. We used decomposable OVKs
with the identity operator as A, and the Gaussian kernel as k. First, we present insights
on the interesting properties of the Kernel Autoencoders representations through 2D
examples (Section 4.5.1). Then, we describe more involved experiments on the NCI
dataset composed of molecules (Section 4.5.2).

4.5.1 Behavior on Low-Dimensional Problems

Experiments on low dimensional data have been run since results can be plotted easily.
It thus provide useful insights on what Kernel Autoencoders are learning. We have
explored several emblematic datasets so as to contrast the disentangling and natural
clustering capacity of Kernel Autoencoders representations.

1D Gaussian Clusters

Figure 4.2 gives a look on the algorithm behavior on 1D data. Results on 1D data are
displayed and analyzed here as they are easily understandable. Indeed, one dimension
of the plot (the x axis) is used to display the original 1D points (the crosses), while their
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Figure 4.2 – Algorithm behavior on 1D data

representations (the f1(xi)) vary along the y axis. As soon as the original point or the
representation needs more than 1 dimension to be plotted, a 2D plot lacks of dimensions
to correctly display the behavior of the algorithm. Original data (to be represented) are
sampled from 2 Gaussian distributions, of standard deviation 0.1, and with expected
value 0 and 2 respectively.

Figures 4.2a and 4.2b show the evolution of the encoding/decoding functions along the
iterations of the algorithm. From the initial yellow representation function, obtained
by uniform weights, the algorithm learns the black function, which seems satisfying in
two ways. First, the representations of the two clusters are easily separable. Points
from the first blue cluster (i.e. drawn from the Gaussian centered at 0) have positive
representations, while points from the red one (i.e. drawn from the Gaussian centered
at 2) have negative ones. If computed in a clustering purpose, the representation thus
gives an easy criterion to distinguish the two clusters. Second, in order to be able to
reconstruct any point, one must observe variability within each cluster. This way, the
reconstruction function can easily reassign every point. On the contrary, the yellow
representation function represents all points by almost the same value, which leads
necessarily to a uniform (and bad) reconstruction.

Figure 4.2c shows another 1D representation function of the two clusters, obtained with
a different initialization. Solutions from Figures 4.2a and 4.2c seem both satisfactory,
and highlight the difficulty of optimizing a non-convex criterion. Figure 4.2d shows a 2D
encoding of these points. Interestingly, the two components of the 2D representation are
highly correlated, underlining that 2D descriptors are over-parametrized for 1D points.
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Figure 4.3 – Algorithm Behavior on 2D Gaussian Clusters

2D Gaussian Clusters

Figure 4.3 displays the algorithm’s performance on 2D Gaussian clusters. The Kernel
Autoencoder architecture is 2-1-2 here. In Figure 4.3a are plotted the original 2D data.
Figure 4.3b shows their 1D internal learned representations. The colormap has been
designed according to the value of this representation. What can be seen first is that the
two clusters remain well separated in the 1 dimensional representation space, validating
the natural clustering ability of Kernel Autoencoders representations. What is even
more interesting is how the clusters are separated. The lighter the blue points are, the
most negative representation they have, or in other terms, the most certain they are
to be in the blue cluster. The converse goes for the darker red points. When looking
at Figure 4.3a, one observes that this color gradient matches the distribution: light
blue points are the most distant from the red cluster, and conversely for the dark red
ones. The algorithm has found the direction that discriminates the two clusters. Similar
results are shown for 3 Gaussian clusters on Figures 4.3c and 4.3d.

Concentric Circles

Let us now consider three noisy concentric circles such as in Figure 4.4a. Although
the main strength of Kernel Autoencoders is to perform autoencoding on complex data
(Section 3.2.3), they can still be applied on vector-valued points. Figures 4.4b and 4.4c
show the reconstructions obtained after fitting respectively a 2-1-2 standard and kernel
Autoencoders. Since the latent space is 1 dimensional, the 2D reconstructions are on
manifolds of the same dimension, hence the curve aspect. What is interesting though
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(a) 2D Input Data
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(b) AE Reconstruction
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(c) KAE Reconstruction
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(d) 2D Re-Representation
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(e) 1D Representation (5 it.)
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(f) 1D Representation (20 it.)

Figure 4.4 – Kernel Autoencoder (KAE) Performance on Noisy Concentric Circles

is that Kernel Autoencoders learn much more complex manifolds than standard ones.
Due to its linear limitations (activation functions did not help much here), the standard
Autoencoder returns a line, very different from the concentric circle, while the Kernel
Autoencoder outputs a more complex manifold, almost reproducing the initial data.

Apart from a good reconstruction, we are also interested in finding representations with
attractive properties. The 1D feature found by the previous Kernel Autoencoder is
interesting, as it is a discriminative one with respect to the original clusters: points
from different circles are mapped around different values (Figure 4.4e). Interestingly,
after a few iterations, some variability is introduced around these cluster values, so
that all codes shall not be mapped back to the same point (Figure 4.4f). This natural
clustering property was desired in Bengio et al. (2013a) for instance.
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(a) Two moons dataset, colored w.r.t. its 1D
representation
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(b) 1D representation of the 2 moons
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(c) Two moons dataset, colored w.r.t. its 2D
representation
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(d) 2D representation of the 2 moons

Figure 4.5 – Algorithm behavior on the 2 moons dataset

Finally, a Kernel Autoencoder with 1 hidden layer of size 2 architecture provides the
internal representations shown in Figure 4.4d. This new 2D representation has a new
interesting disentangling effect: the circle structure is kept in order to preserve the
intra-cluster specificity, while the inter-cluster differentiation is ensured by the circles
dissociation. Again, the disentangling effect is often a desired feature for representation.
One can indeed imagine that classifiers run on the new representations of Figure 4.4d
would perform better in average that if they were run on original points of Figure 4.4a.

This visual 2D example thus gives interesting insights on the good properties of the
representations computed by Kernel Autoencoders: natural clustering, disentanglement.
These two key aspects can notably be found among the list of representations desired
properties exposed in Bengio et al. (2013a).

Two Moons Dataset

Finally, Figure 4.5 shows the algorithm’s behavior on the so called two moons dataset.
2D original points (Figure 4.5a and Figure 4.5c, colored differently according to the
representation on their right) are first mapped to a 1D representation (Figure 4.5b).
Just as for the 3 concentric circles example, this 1D representation is discriminative, also
with intra-cluster variability to reconstruct accurately. The 2D re-representations on
Figure 4.5d shows again the disentangling effect of Kernel Autoencoders representations.
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Table 4.1 – MSREs on Test Metabolites

Dimension AE (sigmoid) AE (relu) KAE

5 99.81 96.62 76.38
10 87.36 84.02 65.76
25 72.31 68.77 51.63
50 63.00 58.29 40.72
100 55.43 48.63 36.27

4.5.2 Representation Learning on Molecules

We now present an application of Kernel Autoencoders (KAEs) in chemoinformatics.
The motivation is triple. First, such complex data cannot be handled by standard
Autoencoders. Second, kernel methods being prominent in the field, data are often
stored as Gram matrices, suiting perfectly our framework. Third, finding a compressed
representation of a molecule is a problem of highest interest in Drug Discovery. We
considered two different problems, one supervised, one unsupervised.

As for the supervised one, we exploited the dataset of Su et al. (2010) from the NCI-
cancer. database: it consists in a Gram matrix comparing 2303 molecules by the mean of
a Tanimoto kernel (a linear path kernel built using the presence or absence of sequences
of atoms in the molecule), as well as the molecules activities in the presence of 59 types
of cancer. The dataset containing no vectorial representations of the molecules (but
only Gram matrices), only kernel methods were possible to benchmark. As a good
representation is supposed to facilitate ulterior learning tasks, we assess the goodness
of the representations through the regression scores obtained by Random Forests (RFs)
from scikit-learn (Pedregosa et al., 2011) fed with it.

2-layer KAEs with respectively 5, 10, 25, 50 and 100 internal dimension were run,
as well as Kernel Principal Component Analyses (KPCAs) with the same number of
components. Finally, these representations were given as inputs to RFs. KRR was also
added to the comparison. The Normalized Mean Squared Errors (NMSEs), averaged on
10 runs, for all strategies and on the first 8 cancers are displayed in Figure 4.6. Clearly,
methods combining a data representation step followed by a prediction one performs
better. But the good performance of our approach should not be attributed to the use
of RFs only, since the same strategy run with KPCA leads to worse results. Indeed, the
KAE 50 + RF strategy outperforms all other procedures on all problems, managing to
extract compact and useful feature vectors from the molecules.

The data for the unsupervised problem is taken from Brouard et al. (2016a). It is
composed of two sets (a train set of size 5579, and a test set of size 1395), each one
containing metabolites under the form of 4136-long binary vectors (called fingerprints),
as well as a Gram matrix comparing them. 2-layer standard AEs from Keras (Chollet
et al., 2015) with sigmoid and relu activation functions, and 2-layer KAEs with internal
layer of size 5, 10, 25, 50 and 100, were trained. In absence of a supervised task,
we measured the Mean Squared Reconstruction Errors (MSREs) induced on the test
set, and stored them in Table 4.1. Again, the KAE approach shows a systematic
improvement.
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All Strategies on 8 Cancers Graph

As expected, the greater the dimension of the extracted representations, the better
the prediction performance by the RF, for both KAE and KPCA. However, it is worth
noticing that for cancer 7, the prediction error increases between the 50 and the 100-long
representations. This might be the beginning of an overfitting phenomenon (seen on 8
of the 59 cancer types, always between the 50 and the 100-dimensional representations),
as the extracted components may become less relevant, thus misleading the RF in its
predictions.
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Figure 4.6 – Performance of the Different Strategies on 8 Cancers
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Table 4.2 – NMSEs on Molecular Activity for Different Types of Cancers

KRR KPCA10 + RF KPCA50 + RF KAE10 + RF KAE50 + RF

Canc. 01 0.02978 0.03279 0.03035 0.03097 0.02808
Canc. 02 0.03004 0.03194 0.02978 0.03099 0.02775
Canc. 03 0.02878 0.03155 0.02914 0.02989 0.02709
Canc. 04 0.03003 0.03274 0.03074 0.03218 0.02924
Canc. 05 0.02954 0.03185 0.02903 0.03065 0.02754
Canc. 06 0.02914 0.03258 0.03083 0.03134 0.02838
Canc. 07 0.03113 0.03468 0.03207 0.03257 0.03018
Canc. 08 0.02899 0.03162 0.02898 0.03065 0.02770
Canc. 09 0.02860 0.02992 0.02804 0.02872 0.02627
Canc. 10 0.02987 0.03291 0.03111 0.03170 0.02910
Canc. 11 0.03035 0.03258 0.03095 0.03188 0.02900
Canc. 12 0.03178 0.03461 0.03153 0.03253 0.02983
Canc. 13 0.03069 0.03338 0.03104 0.03162 0.02857
Canc. 14 0.03046 0.03340 0.03102 0.03135 0.02862
Canc. 15 0.02910 0.03221 0.03066 0.03131 0.02806
Canc. 16 0.02956 0.03220 0.02958 0.03060 0.02779
Canc. 17 0.03004 0.03413 0.03140 0.03145 0.02869
Canc. 18 0.02954 0.03195 0.03005 0.03108 0.02805
Canc. 19 0.03003 0.03211 0.03079 0.03178 0.02832
Canc. 20 0.02911 0.03179 0.03041 0.03085 0.02769
Canc. 21 0.02963 0.03275 0.03023 0.03152 0.02837
Canc. 22 0.03075 0.03391 0.03089 0.03263 0.02958
Canc. 23 0.03006 0.03286 0.02983 0.03109 0.02760
Canc. 24 0.03075 0.03398 0.03112 0.03242 0.02894
Canc. 25 0.02977 0.03307 0.03054 0.03159 0.02824
Canc. 26 0.03083 0.03358 0.03132 0.03206 0.02959
Canc. 27 0.03083 0.03347 0.03116 0.03230 0.02974
Canc. 28 0.03061 0.03256 0.03116 0.03185 0.02918
Canc. 29 0.03056 0.03360 0.03147 0.03181 0.02892
Canc. 30 0.03099 0.03288 0.03100 0.03181 0.02906
Canc. 31 0.03082 0.03361 0.03161 0.03242 0.02986
Canc. 32 0.03233 0.03562 0.03300 0.03422 0.03158
Canc. 33 0.03065 0.03208 0.03045 0.03142 0.02909
Canc. 34 0.03326 0.03668 0.03423 0.03486 0.03183
Canc. 35 0.03292 0.03587 0.03393 0.03450 0.03146
Canc. 36 0.03068 0.03389 0.03122 0.03249 0.02925
Canc. 37 0.03023 0.03310 0.03061 0.03130 0.02878
Canc. 38 0.03100 0.03487 0.03156 0.03327 0.02974
Canc. 39 0.02989 0.03288 0.03149 0.03148 0.02865
Canc. 40 0.03166 0.03525 0.03201 0.03352 0.03010
Canc. 41 0.03139 0.03501 0.03203 0.03316 0.03025
Canc. 42 0.03010 0.03251 0.03013 0.03072 0.02807
Canc. 43 0.03042 0.03324 0.03062 0.03144 0.02806
Canc. 44 0.02838 0.03045 0.02821 0.02927 0.02679
Canc. 45 0.02910 0.03085 0.02895 0.02970 0.02651
Canc. 46 0.02969 0.03258 0.02996 0.03111 0.02834
Canc. 47 0.03148 0.03438 0.03346 0.03286 0.03056
Canc. 48 0.03272 0.03640 0.03397 0.03425 0.03197
Canc. 49 0.03305 0.03392 0.03329 0.03334 0.03148
Canc. 50 0.03229 0.03637 0.03300 0.03404 0.03155
Canc. 51 0.02943 0.03188 0.03028 0.03072 0.02857
Canc. 52 0.03309 0.03420 0.03252 0.03335 0.03130
Canc. 53 0.03170 0.03340 0.03105 0.03170 0.02843
Canc. 54 0.03189 0.03439 0.03164 0.03345 0.03036
Canc. 55 0.03082 0.03339 0.03146 0.03207 0.02892
Canc. 56 0.03026 0.03327 0.03041 0.03185 0.02901
Canc. 57 0.02962 0.03237 0.02990 0.03162 0.02855
Canc. 58 0.02883 0.03200 0.02978 0.03058 0.02783
Canc. 59 0.02936 0.03208 0.02914 0.03032 0.02750
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4.6 Conclusion

After a thorough description of the Kernel Autoencoder model in Chapter 3, the goal of
Chapter 4 was to address the optimization issues it raises. Despite the non-convexity of
the criterion, a Representer Theorem dedicated to the composition architecture makes
it possible to learn Kernel Autoencoders via Gradient Descent. When the output space
is infinite dimensional, the Gradient Descent must be alternated with Kernel Ridge
resolutions. Finally, numerical experiments run on synthetic and molecular datasets
exhibit the good properties of representations extracted by Kernel Autoencoders, among
which natural clustering and disentanglement.

The optimization process detailed in this chapter also applies to Deep Kernel Machines,
for which outputs (potentially kernelized) may differ from inputs. If experiments focus
mainly on autoencoding applications, benchmarking Deep Kernel Machines on tasks
such as metabolite identification could be of high interest. In the next chapter, we
consider other loss functions at the last layer than the squared norm in the output
feature space. So far unused within vv-RKHSs, these new losses define OVK machines
that must be solved through duality. They also yield important modifications, such as
sparsity, and improve the performances.
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So far, once the outputs (or the inputs and the outputs in the case of KAE) have been
embedded through the feature map φ, the sole loss function that have been considered
in the output Hilbert space is the squared norm. This is indeed a natural choice, as
it can be computed from kernel evaluations only. Furthermore, the operator-valued
Kernel Ridge Regression (ov-KRR) problems that consequently arise at the last layer
of the architecture admit well-known closed form solutions that allow for the gradient
to propagate.

Nevertheless, it is legitimate to wonder if sophisticated approaches such as Deep IOKR
and KAE do not suffer from the simplicity of the ov-KRR that tackles the surrogate task.
This is all the more true as in both cases, the vv-RKHS norm minimization problem
is a proxy for the real task, respectively predicting a molecule or extracting relevant
representations. Hence, proceeding with a strong data-fitting term, even though the
criterion is not the main goal pursued, and possibly at the expense of a generalization
capacity diminution, does not sound as an ideal solution. However considering other
losses than the squared norm necessitates more work as one cannot rely on closed form
solutions anymore. In contrast, the alternative explored in this chapter leverage a
dualization approach.

While brief reminders on duality within kernel methods are exposed in Section 5.1, the
main tool of this chapter, referred to as the Double Representer Theorem, is stated and
proved in Section 5.2. This general theorem is then used to instantiate specific solvable
problems for two interesting loss functions, the ε-insensitive squared norm and the
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Huber loss, in Section 5.3. Section 5.4 focuses on the particular case of integral losses,
while Section 5.5 finally presents some numerical experiments attesting the benefits of
considering other losses than the squared norm. This chapter covers the following work:

I P. Laforgue∗, A. Lambert∗, L. Brogat-Motte, F. d’Alché-Buc. On the dualization
of operator-valued kernel machines. arXiv preprint arXiv:1910.04621, 2019.

5.1 Reminders on Duality

In this section, we briefly recall basics about dualization that are needed for the rest of
the chapter. In Section 5.1.1 are provided general statements about dualization, while
Section 5.1.2 focuses on their application to scalar kernel machines.

5.1.1 General Reminders

In convex optimization (refer to the monographs by e.g. Rockafellar (1970); Boyd and
Vandenberghe (2004); Nocedal and Wright (2006); Bauschke et al. (2011)), duality is an
approach in which the original optimization problem, referred to as the primal problem,
is reformulated as a dual problem, usually easier to solve. Under certain conditions,
solutions to both the primal and the dual problems coincide, and solving the dual
provides a workaround to the initial problem. These notions are now to be formalized.
For the sake of simplicity, the definition-example below has parameter x in Rd, but the
extension to general Hilbert spaces can be found in Bauschke et al. (2011).

An optimization problem in standard form can be written as

min
x∈Rd

f0(x),

s.t. fi(x) ≤ 0, i ≤ m,
hj(x) = 0, j ≤ p,

(5.1)

with f0, fi, i ≤ m, and hj , j ≤ p, applications from Rd to R. The Lagrangian associated
to (primal) Problem (5.1) is then defined as

L :

(
Rd × Rm × Rp → R

(x, α, ν) 7→ f0(x) +
∑

i αifi(x) +
∑

j νjhj(x)

)
,

and the Lagrange dual function is given by

g :

Rm × Rp → R
(α, ν) 7→ inf

x∈Rd
L (x, α, ν)

 .

One can already notice that for any α ∈ Rm+ and any ν ∈ Rp, it holds g(α, ν) ≤ p∗, with
p∗ the value at the optimum in primal Problem (5.1).

The Lagrange dual problem associated to Problem (5.1) then writes

max g(α, ν),

s.t. α � 0.
(5.2)

The weak duality holds for any problem and ensures that d∗ ≤ p∗, with d∗ the value at
the optimum in dual Problem (5.2). The next proposition states sufficient conditions
for the equality to hold.
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Proposition 5.1. (Slater’s Condition) Assume that primal Problem (5.1) is convex,
i.e. f0 is convex defined on a convex set, fi, i ≤ m, are convex, and hj, j ≤ p, are
affine. If furthermore the problem is strictly feasible, i.e.

∃x ∈ relint domf0 , fi(x) < 0, i ≤ m, hj(x) = 0, j ≤ p,

then strong duality holds: p∗ = d∗.

Conditions ensuring that strong duality holds in convex problems are called constraint
qualifications. The next proposition furnishes other constraint qualifications. They are
more used in practice as they help solving the optimization problems.

Proposition 5.2. (Karush-Kuhn-Tucker Conditions) The following conditions
are necessary and sufficient for strong duality to hold in (differentiable) convex problems.

1. Primal feasibility: fi(x) ≤ 0 for i ≤ m and hj(x) = 0 for j ≤ p.

2. Dual feasibility: α � 0.

3. Complementary slackness: αifi(x) = 0 for i ≤ m.

4. First order condition: ∇f0(x) +
∑

i αi∇fi(x) +
∑

j νj∇hj(x) = 0.

We close this subsection with two important definitions, that of the Fenchel-Legendre
transform, that naturally arises during the derivation of dual problems, and that of the
infimal-convolution (Bauschke et al., 2011), which is crucial in this chapter’s analysis.

Definition 5.3. Let f : Rd → R. The Fenchel-Legendre transform of f is the function
f? : Rd → R defined as

f?(x) = sup
y

〈
x, y
〉
− f(y).

Definition 5.4. Let f, g : Rd → R. The infimal-convolution of f and g is the function
f � g : Rd → R defined as

f � g(x) = inf
y
f(y) + g(x− y).

Proposition 5.5. Using Definitions 5.3 and 5.4’s notation, it holds(
f � g

)?
(x) = f?(x) + g?(x).

The next subsection then deals with applications of the duality to scalar kernel machines.

5.1.2 Application to Scalar Kernel Machines

The use of duality has a long history in scalar kernel methods. Indeed, if plugging the
expansion obtained by the Representer Theorem (Theorem 2.5) into the KRR criterion
is enough to derive the optimal coefficient, this is not the case in general. For instance,
the Support Vector Machines (SVMs, Cortes and Vapnik (1995)) that addresses binary
classification (yi ∈ {−1,+1}) has primal problem

min
h∈Hk, b∈R

1

n

n∑
i=1

max
(

0, 1− yi(h(xi) + b)
)

+
Λ

2
‖h‖2Hk ,
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that rewrites with the introduction of slack variables

min
h,b,u

n∑
i=1

ui +
Λ

2
‖h‖2Hk ,

s.t. − ui ≤ 0, for i ≤ n,
1− yi(h(xi) + b)− ui ≤ 0, for i ≤ n.

Using the Karush-Kuhn-Tucker (KKT) conditions, and with the notation α = (αi)
n
i=1,

the dual problem writes

max
α

1>α− 1

2
α>K̄α,

s.t. 0 � α � 1/Λ,

α>y = 0,

with K̄ the n×nmatrix such that K̄ij = yik(xi, xj)yj , and ĥ given by ĥ =
∑

i yiαik(·, xi).
This latter problem is a classical Quadratic Program, that can be solved easily, leading
to an efficient resolution although the primal problem seems, at first, more complex
than that of the KRR for instance. This approach has later been applied to regression
(Support Vector Regressors, SVRs, Drucker et al. (1997)), Ridge Regression (Saunders
et al., 1998), or Least-Squares SVMs (Suykens et al., 2002) among others.

Yet, very few attempts have been made in the literature to adapt this methodology
to general operator-valued kernel machines, although the idea was already present in
the Appendix of Brouard et al. (2016b), or in Sangnier et al. (2017) for the finite
dimensional case. One reason may be that the dual problem, in its most general form,
involves infinite dimensional Lagrange multipliers. This difficulty is overcome in the
present chapter through the use of a Double Representer Theorem. This is the subject
of the next section.

5.2 The Double Representer Theorem

In this section, we state and prove the Double Representer Theorem, that makes dual
OVK problems computable in most settings (Section 5.2.2). Prior to the statement, we
recall in Section 5.2.1 two mentions in the literature of the use of duality within matrix-
valued and operator-valued kernels. Section 5.2.3 is finally devoted to the analysis of
the hypotheses needed.

5.2.1 Previous Mentions of Duality within vv-RKHSs

For self-containedness, we first recall our learning setting. We want to learn a prediction
function h∗ from some metric space X to some (infinite dimensional) output Hilbert
space Y, that minimizes among a hypothesis set H ⊂ YX the risk

EZ∼P
[
`
(
h(X), Y

)]
,

where Z = (X,Y ) is a random vector valued in Z = X × Y with unknown probability
distribution P , and ` : Y × Y → R is a given loss function. The class H is assumed
to be a vv-RKHS HK, associated to some OVK K : X × X → L(Y). Following the
(regularized) ERM paradigm (recalled in Chapter 1), and given Sn = {(xi, yi)ni=1} ∈ Zn
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a sample of n i.i.d. realizations of Z, the general form of an OVK learning problem is
to find ĥ that solves:

min
h∈HK

1

n

n∑
i=1

`
(
h(xi), yi

)
+

Λ

2
‖h‖2HK . (5.3)

A crucial tool in kernel methods to address these problems is the Representer Theorem
(Theorem 2.12), ensuring that ĥ actually pertains to a reduced subspace of HK. For
the sake of self-containedness of the present analysis, it is briefly recalled here.

Theorem 5.6. There exist (α̂i)
n
i=1 ∈ Yn such that Problem (5.3)’s solution ĥ is given by

ĥ =
1

Λn

n∑
i=1

K(·, xi)α̂i.

Although Theorem 5.6 drastically downscales the search domain (from HK to Yn), it
gives no additional information about the optimal coefficients (α̂i)

n
i=1. One way to gain

insight is to perform Problem (5.3)’s dualization, with the notation `i : y ∈ Y 7→ `(y, yi)
for any i ≤ n.

Theorem 5.7. The solution to Problem (5.3) is given by

ĥ =
1

Λn

n∑
i=1

K(·, xi)α̂i,

with (α̂i)
n
i=1 ∈ Yn the solutions to the dual problem

min
(αi)ni=1∈Yn

n∑
i=1

`?i (−αi) +
1

2Λn

n∑
i,j=1

〈
αi,K(xi, xj)αj

〉
Y
, (5.4)

Proof. First, notice that the primal problem

min
h∈HK

1

n

n∑
i=1

`
(
h(xi), yi

)
+

Λ

2
‖h‖2HK

can be rewritten

min
h∈HK

n∑
i=1

`i(ui) +
Λn

2
‖h‖2HK ,

s.t. ui = h(xi) ∀i ≤ n.

Therefore, with the notation u = (ui)i≤n and α = (αi)i≤n, the Lagrangian writes

L (h,u,α) =

n∑
i=1

`i(ui) +
Λn

2
‖h‖2HK +

n∑
i=1

〈
αi, ui − h(xi)

〉
Y
,

=

n∑
i=1

`i(ui) +
Λn

2
‖h‖2HK +

n∑
i=1

〈
αi, ui

〉
Y −

n∑
i=1

〈
K(·, xi)αi, h

〉
HK

.
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Differentiating with respect to h and using Definition 5.3, one gets

g(α) = inf
h∈HK,u∈Yn

L (h,u,α),

=
n∑
i=1

inf
ui∈Y

{
`i(ui) +

〈
αi, ui

〉
Y

}
+ inf
h∈HK

Λn

2
‖h‖2HK −

n∑
i=1

〈
K(·, xi)αi, h

〉
HK

 ,

=

n∑
i=1

−`?i (−αi)−
1

2Λn

n∑
i,j=1

〈
αi,K(xi, xj)αj

〉
Y
,

together with the equality ĥ =
1

Λn

n∑
i=1

K(·, xi)αi. The conclusion follows immediately.

Theorem 5.7 can be found in the Appendix of Brouard et al. (2016b) in its most general
form presented here, but is only used in the paper for maximum-margin regression and
Ridge Regression, for which it is not even necessary. A version for matrix-valued kernels
is stated in Sangnier et al. (2017) (Proposition 1 therein), with a focus on ε-insensitive
losses exclusively.

Compared to Theorem 5.6, dualization thus brings more knowledge about the optimal
coefficients, now known to be the solutions to the dual problem also. Notice nonetheless
that the Representer Theorem holds true for a much wider class of problems, explaining
this deficit of information. As such, Problem (5.4) is however of little interest, as the
optimization must be performed on the infinite dimensional space Yn, which is merely
impossible. The next section introduces a Double Representer Theorem that permits to
get around this difficulty. From now on, all presented results have been established in
Laforgue et al. (2019c).

5.2.2 Theorem Statement

In order to make Problem (5.4) solvable, we need some (mild) assumptions on the
kernel and the loss function. The next one has already been exposed in Chapter 2 (see
Definition 2.9 therein), but is recalled here for self-containedness purposes. Here and
throughout, Y denotes span{yi, i ≤ n}.
Assumption 5.8. The OVK K : X × X → L(Y) is said to be separable if and only
if there exist a scalar kernel k : X × X → R, and a positive semi-definite operator
A ∈ L(Y) such that:

∀(x, x′) ∈ X 2, K(x, x′) = k(x, x′)A.

If furthermore A = IY , then K is said to be identity decomposable.

Under Assumption 5.8, KX and KY
A denote respectively the n × n input and output

Gram matrices such that [KX ]ij = k(xi, xj), and [KY
A ]ij = 〈yi, Ayj〉Y . If Assumption 5.8

has already been discussed in Chapter 2, the next one is a bit more general.

Assumption 5.9. There exist T ∈ N∗, and for all t ≤ T admissible scalar kernels
kt : X × X → R and positive semi-definite operators At ∈ L(Y), such that:

∀(x, x′) ∈ X 2, K(x, x′) =

T∑
t=1

kt(x, x
′)At.



CHAPTER 5. DUALIZING OPERATOR-VALUED KERNEL MACHINES 83

Similarly, under Assumption 5.9, KX
t and KY

t , for t ≤ T , denote the n × n matrices
such that [KX

t ]ij = kt(xi, xj), and [KY
t ]ij = 〈yi, Atyj〉Y for all t ≤ T . Independently

from the linear operators At, or A underAssumption 5.8, KY denotes the n× n matrix
such that [KY ]ij = 〈yj , yj〉.
Notice that Assumption 5.9 is by no means restrictive, since every shift-invariant OVK
can be approximated arbitrarily closely by kernels satisfying Assumption 5.9 (see e.g.
Carmeli et al. (2010)). The next assumption is of a different order, and deals with
K(xi, xj) invariant subspaces.

Assumption 5.10. ∀i, j ≤ n, Y is an invariant subspace of K(xi, xj).

Notice that if for all t ≤ T , At keeps Y invariant, then Assumption 5.9 directly implies
Assumption 5.10. The next two assumptions define admissible losses through conditions
on their Fenchel-Legendre transforms.

Assumption 5.11. ∀i ≤ n, ∀(αY, α⊥) ∈ Y × Y⊥,

`?i (α
Y) ≤ `?i (αY + α⊥).

Assumption 5.12. ∀i ≤ n, ∃Li : Rn+n2 → R such that ∀ ω = (ωj)
n
j=n ∈ Rn,

`?i

(
−∑n

j=1 ωj yj

)
= Li

(
ω,KY

)
.

Equipped with these assumptions and notation, Theorem 5.13 proves that the solutions
to Problem (5.4) actually lie in Yn, ensuring their computability.

Theorem 5.13. Let K be an OVK satisfying Assumption 5.10, and ` : Y × Y → R be
a loss function with Fenchel-Legendre transforms satisfying Assumptions 5.11 and 5.12.
Then, the solution to Problem (5.3) is given by

ĥ =
1

Λn

n∑
i,j=1

K(·, xi) ω̂ij yj , (5.5)

with Ω̂ = [ω̂ij ] ∈ Rn×n the solution to the computable convex optimization problem

min
Ω∈Rn×n

n∑
i=1

Li

(
Ωi:,K

Y
)

+
1

2Λn
Tr
(
M̃>(Ω⊗ Ω)

)
, (5.6)

withM the n×n×n×n tensor such thatMijkl = 〈yk,K(xi, xj)yl〉Y , and M̃ its rewriting
as a n2 × n2 block matrix such that its (i, j) block is the n × n matrix with elements
M̃

(i,j)
st = 〈yj ,K(xi, xs)yt〉Y . If K further satisfies Assumption 5.9, tensor M simplifies

to Mijkl =
∑T

t=1[KX
t ]ij [K

Y
t ]kl and the problem rewrites

min
Ω∈Rn×n

n∑
i=1

Li

(
Ωi:,K

Y
)

+
1

2Λn

T∑
t=1

Tr
(
KX
t ΩKY

t Ω>
)
. (5.7)

Proof. Using Theorem 5.7, one gets that ĥ = 1
Λn

∑n
i=1K(·, xi)α̂i, with the (α̂i)i≤n

satisfying:

(α̂i)
n
i=1 ∈ argmin

(αi)ni=1∈Yn

n∑
i=1

`?i (−αi) +
1

2Λn

n∑
i,j=1

〈
αi,K(xi, xj)αj

〉
Y
.
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However, this optimization problem cannot be solved in a straightforward manner, as
Y is in general infinite dimensional. Nevertheless, it is possible to bypass this difficulty
by noticing that the optimal (α̂i)i≤n actually lie in Yn. Indeed, by Assumptions 5.10
and 5.11, for all for all (αY

i )i≤n, (α
⊥
i )i≤n ∈ Yn × Y⊥

n, it holds:

n∑
i=1

`?i (−αY
i ) +

1

2Λn

n∑
i,j=1

〈
αY
i ,K(xi, xj)α

Y
j

〉
Y

≤
n∑
i=1

`?i (−αY
i − α⊥i ) +

1

2Λn

n∑
i,j=1

〈
αY
i + α⊥i ,K(xi, xj)(α

Y
j + α⊥j )

〉
Y
,

ensuring that the optimal coefficients are valued in Yn. If the inequality about `?i follows
directly Assumption 5.11, that about K(xi, xj) can be obtained by Assumption 5.10
through the following calculus:

n∑
i,j=1

〈
αY
i + α⊥i ,K(xi, xj)(α

Y
j + α⊥j )

〉
Y

=
n∑

i,j=1

〈
αY
i ,K(xi, xj)α

Y
j )
〉
Y

+ 2
n∑

i,j=1

〈
α⊥i ,K(xi, xj)α

Y
j

〉
Y

+
n∑

i,j=1

〈
α⊥i ,K(xi, xj)α

⊥
j

〉
Y
,

=
n∑

i,j=1

〈
αY
i ,K(xi, xj)α

Y
j )
〉
Y

+
n∑

i,j=1

〈
α⊥i ,K(xi, xj)α

⊥
j

〉
Y
,

≥
n∑

i,j=1

〈
αY
i ,K(xi, xj)α

Y
j )
〉
Y
,

where we have used successively Assumption 5.10 and the positiveness of K. So there
exists Ω = [ωij ]1≤i,j≤n ∈ Rn×n such that for all i ≤ n, α̂i =

∑
j ωij yj . This proof

technique is very similar in spirit to that of the Representer Theorem, and yields an
analogous result, the reduction of the search space to a smaller vector space. The dual
optimization problem thus rewrites:

min
Ω∈Rn×n

n∑
i=1

`?i

− n∑
j=1

ωij yj

+
1

2Λn

n∑
i,j=1

〈
n∑
k=1

ωik yk,K(xi, xj)

n∑
l=1

ωjl yl

〉
Y

min
Ω∈Rn×n

n∑
i=1

Li

(
(ωij)j≤n,K

Y
)

+
1

2Λn

n∑
i,j=1

ωik ωjl Mijkl,

min
Ω∈Rn×n

n∑
i=1

Li

(
(ωij)j≤n,K

Y
)

+
1

2Λn
Tr
(
M̃>(Ω⊗ Ω)

)
,

withM the n×n×n×n tensor such thatMijkl = 〈yk,K(xi, xj)yl〉Y , and M̃ its rewriting
as a n2 × n2 block matrix such that its (i, j) block is the n× n matrix with elements

M̃
(i,j)
st =

〈
yj ,K(xi, xs)yt

〉
Y
.

The second term is quadratic in Ω, and consequently convex. The Li’s are basically
rewritings of the Fenchel-Legendre transforms `?i ’s that ensure the computability of the
problem (they only depend on KY , which is known). Regarding their convexity, we
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know by definition that the `?i ’s are convex. Composing by a linear function preserving
the convexity, we know that each Li is convex with respect to Ωi:, and therefore with
respect to Ω.

Thus, we have converted the infinite dimensional primal problem in HK into an infinite
dimensional dual problem in Yn, which in turn is reduced to a convex optimization
procedure over Rn×n, that only involves computable quantities.

If K satisfies Assumption 5.9, the tensor M simplifies to

Mijkl =
〈
yk,K(xi, xj)yl

〉
Y

=
T∑
t=1

kt(xi, xj)
〈
yk, Atyl

〉
Y =

T∑
t=1

[KX
t ]ij [K

Y
t ]kl,

and the problem rewrites

min
Ω∈Rn×n

n∑
i=1

Li

(
Ωi:,K

Y
)

+
1

2Λn

T∑
t=1

Tr
(
KX
t ΩKY

t Ω>
)
.

This theorem can be seen as a Double Representer Theorem, as both theorems share
analogous proofs and consequences: a search domain reduction, respectively from HK
to Yn, and Yn to Rn×n. The following remarks address computational implications of
Theorem 5.13, as well as Assumption 5.10.

Remark 5.14. Thanks to the Double Representer Theorem, the knowledge of the n4

tensor M is thus the sole requirement to make OVK problems in infinite dimensional
output spaces computable. Although it might seem prohibitive at first sight, one has to
keep in mind that a n2 cost is needed to use kernels with infinite dimensional feature
maps (like the scalar Gaussian kernel), while the second n2 cost makes it possible to
handle infinite dimensional outputs. In the particular case of a decomposable kernel,
one has the simplifying identity Mijkl = KX

ijK
Y
kl, so that only the knowledge of two n2

matrices is required.

Remark 5.15. The second term of Problem (5.6) can be easily optimized. Indeed, let
M̃ be a block matrix such that M̃ (i,j)

st = M̃
(s,t)
ij for i, j, s, t ≤ n. Notice M̃ used in

Theorem 5.13 satisfies this assumption as a direct consequence of the OVK symmetry
property. Then it holds

∂Tr
(
M̃>(Ω⊗ Ω)

)
∂ωst

= 2Tr
(
M̃ (s,t)>Ω

)
.

Indeed, notice that Tr(M̃>(Ω ⊗ Ω)) =
∑n

i,j=1 ωijTr(M̃ (i,j)>Ω) and use the symmetry

assumption. In the particular case of a decomposable kernel, M̃ (i,j) = KX
i: K

Y
j:
> so that

∂Tr
(
M̃>(Ω⊗ Ω)

)
∂ωst

= 2Tr
(
M̃ (s,t)>Ω

)
= 2

n∑
i,j=1

[
KX
s: K

Y
t:
>
]
ij

ωij = 2
n∑

ij=1

KX
siK

Y
tjωij = 2

[
KXΩKY

]
st
.
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Remark 5.16. Assumption 5.10 is actually a stronger assumption than that required.
One only needs

n∑
i,j=1

〈αY
i ,K(xi, xj)α

Y
j 〉Y ≤

n∑
i,j=1

〈
αY
i + α⊥i ,K(xi, xj)(α

Y
j + α⊥j )

〉
Y
,

for all (αY
i )i≤n, (α

⊥
i )i≤n ∈ Yn × Y⊥

n. It is easy to verify that this inequality holds true
for any OVK that satisfies Assumption 5.10.

5.2.3 Admissible Losses

Before studying particular instances of Problem (5.7), we analyze in this section the
admissible losses that satisfy Assumptions 5.11 and 5.12.

Proposition 5.17. The following losses have Fenchel-Legendre transforms satisfying
Assumptions 5.11 and 5.12:

• `i(y) = f(
〈
y, zi

〉
), zi ∈ Y and f : R → R convex. This encompasses maximum-

margin regression, obtained with zi = yi and f(t) = max(0, 1− t).

• `(y) = f(‖y‖), f : R+ → R convex increasing s.t. t 7→ f ′(t)
t is continuous over

R+. This includes all power functions λ
η ‖y‖

η
Y for η > 1 and λ > 0.

• ∀λ > 0, with Bλ the centered ball of radius λ,

� `(y) = λ‖y‖, � `(y) = λ‖y‖ log(‖y‖),
� `(y) = χBλ(y), � `(y) = λ(exp(‖y‖)− 1).

• `i(y) = f(y − yi), with f? satisfying Assumptions 5.11 and 5.12.

• Any infimal convolution of functions satisfying Assumptions 5.11 and 5.12. This
encompasses ε-insensitive losses (Sangnier et al., 2017), the Huber loss (Huber,
1964), and more generally all Moreau envelopes (Moreau, 1962).

Proof. The proof technique is the same for all losses: first explicit the Fenchel-Legendre
transforms `?i , then use simple arguments to meet Assumptions 5.11 and 5.12. For
instance, any increasing function of ‖α‖ automatically satisfy the assumptions.

• Assume that ` is such that there is f : R → R convex, ∀i ≤ n,∃zi ∈ Y, `i(y) =
f(
〈
y, zi

〉
). Then `?i : Y → R writes `?i (α) = supy∈Y

〈
α, y

〉
− f(

〈
y, zi

〉
). If α is not

collinear to zi, this quantity is obviously +∞. Otherwise, assume that α = λzi.
The Fenchel-Legendre transform rewrites: `?i (α) = supt λt − f(t) = f?(λ) =
f?(±‖α‖/‖zi‖). Finally, `?i (α) = χspan{zi}(α) + f?(±‖α‖/‖zi‖). If α /∈ Y, then
a fortiori α /∈ span{zi}, so `?i (α

Y + α⊥) = +∞ ≥ `?i (α
Y) for all (αY, α⊥) ∈

Y × Y⊥. For all i ≤ n, `?i satisfy Assumption 5.11. As for Assumption 5.12,
if α =

∑n
i=1 ciyi, then χspan{zi}(α) only depends on the (ci)i≤n Indeed, assume

that zi ∈ Y writes
∑

j bjyj . Then χspan{zi}(α) is equal to 0 if there exists λ ∈ R
such that cj = λbj for all j ≤ n, and to +∞ otherwise. The second term of `?i
depending only on ‖α‖, it satisfies Assumption 5.12. This concludes the proof.
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• Assume that ` is such that there is f : R+ → R convex increasing, with f ′(t)/t
continuous over R+, `(y) = f(‖y‖). Although this loss may seem useless at the
first sight since ` does not depend on yi, it should not be forgotten that the
composition with y 7→ y − yi does not affect the validation of Assumptions 5.11
and 5.12 (see below). One has: `?(α) = supy∈Y

〈
α, y

〉
− f(‖y‖). Differentiating

with respect to y, one gets: α = f ′(‖y‖)/‖y‖ · y, which is always well define
as t 7→ f ′(t)/t is continuous over R+. Reverting the equality, it holds: y =
f ′−1(‖α‖)/‖α‖ · α, and `?(α) = ‖α‖f ′−1(‖α‖) − f ◦ f ′−1(‖α‖). This expression
depending only on ‖α‖, Assumption 5.12 is automatically satisfied. Let us now
investigate the monotonicity of `? w.r.t. ‖α‖. Let g : R+ → R such that g(t) =
tf ′−1(t)−f ◦f ′−1(t). Then g′(t) = f ′−1(t) ≥ 0. Indeed, as f ′ : R+ → R+ is always
positive due to the monotonicity of f , so is f ′−1. This final remark guarantees
that `? is increasing with ‖α‖. It is then direct that `? fulfills Assumption 5.11.

• Assume that `(y) = λ‖y‖. It is well known that `?(α) = χBλ(α). The latter being
an increasing function of ‖α‖, it directly fulfills Assumptions 5.11 and 5.12.

• Assume that `(y) = χBλ(y). It is well known that `?(α) = λ‖α‖. The usual
arguments on the monotonicity of `? w.r.t. ‖α‖ permit to conclude.

• Assume that `(y) = λ‖y‖ log(‖y‖). It can be shown that `?(α) = λe
‖α‖
λ
−1. The

same arguments as above apply.

• Assume that `(y) = λ(exp(‖y‖)− 1). It can be shown that

`?(α) = 1{‖α‖ ≥ λ} ·
(
‖α‖ log(‖α‖/(λe)) + λ

)
.

Again, the Fenchel-Legendre transform is an increasing function of ‖α‖: it satisfies
Assumptions 5.11 and 5.12.

• Assume that `i(y) = f(y − yi), with f such that f? fulfills Assumptions 5.11
and 5.12. Then `?i (α) = supy∈Y

〈
α, y

〉
− f(y− yi) = f?(α) +

〈
α, yi

〉
. If f? satisfies

Assumptions 5.11 and 5.12, then so does `?i . This remark is very important, as it
gives more sense to loss function based on ‖y‖ only, since they can be applied to
y − yi now.

• Assume that there exists f, g satisfying Assumptions 5.11 and 5.12 such that
`i(y) = (f � g)(y). By Proposition 5.5 it holds (f � g)? = f? + g?, so that if both
f and g satisfy Assumptions 5.11 and 5.12, so does f � g. This last example allows
to deal with ε-insensitive losses for instance (convolution of a loss and χBε), the
Huber loss (convolution of ‖.‖ and ‖.‖2), or more generally all Moreau envelopes
(convolution of a loss and 1

2‖.‖2).

One can notice that most losses that depend exclusively on norms and dot products
satisfy Assumptions 5.11 and 5.12. For losses that leverage the functional nature of
elements of Y, specific tools must be used, that are detailed in Section 5.4. For now,
we focus on particular instances of Problem (5.7), namely when ` is the ε-insensitive
squared norm, or the Huber loss.
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Figure 5.1 – Standard and ε-version of the squared norm in 1 and 2 dimensions, ε = 1.5.
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5.3 Specific Instances of Dual Problems

In this section, we completely derive the dual problems for two interesting losses, the
ε-insensitive squared norm and the Huber loss.

5.3.1 The ε-Insensitive Ridge Regression

As a first go, we recall the important notion of ε-insensitive losses. Following in the
footsteps of Sangnier et al. (2017), we extend them in a natural way from Rp to any
Hilbert space Y. In order to avoid overwhelming notation, ` denotes here the loss taken
with respect to one argument only (i.e. previously `i).

Definition 5.18. Let ` : Y → R be a convex loss such that `(0) = 0, and ε > 0. The
ε-insensitive version of `, denoted `ε, is defined by `ε(y) = (`�χBε)(y), or again:

∀y ∈ Y, `ε(y) =


0 if ‖y‖Y ≤ ε

inf
‖d‖Y≤1

`(y − εd) otherwise

In other terms, `ε(y) is the smallest value `(z) attained by a point z within the ε-ball
centered at y. Figure 5.1 gives an illustration of ε-insensitive losses in one and two
dimensions. Interestingly, and as detailed by Theorem 5.19, Problem (5.7) for the
ε-insensitive squared norm and an identity decomposable kernel admits a very nice
writing, allowing for an efficient resolution.

Theorem 5.19. For an identity decomposable OVK K, the solution to the ε-Ridge
regression problem

min
h∈HK

1

2n

n∑
i=1

max

(
‖h(xi)− yi‖Y − ε, 0

)2

+
Λ

2
‖h‖2HK , (5.8)

is given by Equation (5.5), with Ω̂ = ŴV −1, and Ŵ the solution to the Multi-Task
Lasso problem

min
W∈Rn×n

1

2

∥∥AW −B∥∥2

Fro
+ ε ‖W‖2,1, (5.9)

with V , A, B such that KY = V V >, KX

Λn + In = A>A, and V = A>B.
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Proof. Applying Theorem 5.7 together with the Fenchel-Legendre transforms detailed
in the proof of Proposition 5.17, a dual to Problem (5.8) is:

min
(αi)ni=1∈Yn

1

2

n∑
i=1

‖αi‖2Y −
n∑
i=1

〈
αi, yi

〉
Y + ε

n∑
i=1

‖αi‖Y +
1

2Λn

n∑
i,j=1

〈
αi,K(xi, xj)αj

〉
Y
,

min
(αi)ni=1∈Yn

1

2

n∑
i,j=1

〈
αi,

(
δijIY +

1

Λn
K(xi, xj)

)
αj

〉
Y

−
n∑
i=1

〈
αi, yi

〉
Y + ε

n∑
i=1

‖αi‖Y .

By virtue of Theorem 5.13, we known that the optimal (αi)
n
i=1 ∈ Yn are in Yn. After

the reparametrization αi =
∑

j ωij yj , the problem rewrites:

min
Ω∈Rn×n

1

2
Tr
(
K̃ΩKY Ω>

)
−Tr

(
KY Ω

)
+ ε

n∑
i=1

√[
ΩKY Ω>

]
ii
, (5.10)

with Ω, K̃, the n× n matrices such that [Ω]ij = ωi,j , and K̃ = 1
ΛnK

X + In.

Now, let KY = UΣU> = (UΣ1/2)(UΣ1/2)> = V V > be the SVD of KY , and let
W = ΩV . Notice that KY is positive semi-definite, and can be made positive definite if
necessary, so that V is full rank, and optimizing with respect to W is strictly equivalent
to minimizing with respect to Ω. With this change of variable, Problem (5.10) rewrites:

min
W∈Rn×n

1

2
Tr
(
K̃WW>

)
−Tr

(
V >W

)
+ ε‖W‖2,1, (5.11)

with ‖W‖2,1 =
∑

i ‖Wi:‖2 the row-wise `2,1 mixed norm of matrix W , K̃ = A>A
the SVD of K̃, and B such that A>B = V . One can then add the constant term
(1/2)Tr(A>

−1
V V >A−1) = (1/2)Tr(BB>) to the objective function without changing

Problem (5.11). One finally gets the Multi-Task Lasso problem:

min
W∈Rn×n

1

2
‖AW −B‖2Fro + ε‖W‖2,1.

The Multi-Task Lasso is a very well known problem (Obozinski et al., 2010), that can be
solved by e.g. Block Coordinate Descent (BCD, Tseng (2001); Tseng and Yun (2009)).
This procedure is recalled in Algorithm 5.1, with BST the Block Soft Thresholding
operator such that BST(x, τ) = (1−τ/‖x‖)+ ·x, and the objective decrease as stopping
criterion for instance. Notice that the Singular Value Decomposition (SVD) of K̃ is not
necessary, as only A>A = K̃ and A>B = V are involved in the computations. Finally,
the change of variable W = ΩV is always licit, since V may be assumed invertible.

If K is not identity decomposable, but only satisfies Assumption 5.9, Problem (5.7)
cannot be simplified as Problem (5.9). Nonetheless, it admits a simple resolution, as
detailed in the following lines. After the Ω reparametrization, the problem writes

min
Ω∈Rn×n

1

2
Tr(ΩKY Ω>)−Tr

(
KY Ω

)
+ ε

n∑
i=1

√[
ΩKY Ω>

]
ii

+
1

2Λn

T∑
t=1

Tr(KX
t ΩKY

t Ω>),
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Algorithm 5.1 Block Coordinate Descent (BCD)
input : Gram matrices KX , KY , parameters Λ, ε
init : K̃ = 1

ΛnK
X + In, KY = V V >, W = 0Rn×n

6 while stopping criterion False do
7 for row i from 1 to n do

8 Wi: = BST
(
Wi: + 1

K̃ii

[
Vi: − K̃i:W

]
, ε

K̃ii

)
9 return W

min
W∈Rn×n

1

2
Tr(WW>) +

1

2Λn

T∑
t=1

Tr(KX
t WK̃Y

t W
>)−Tr

(
V >W

)
+ ε‖W‖2,1,

with KY = V V >, W = ΩV , K̃Y
t = V −1KY

t (V >)−1. Due to the different quadratic
terms, this problem cannot be summed up as a Multi-Task Lasso like Problem (5.9).
However, it may still be solved, e.g. by proximal gradient descent. Indeed, the gradient
of the smooth term (i.e. all but the `2,1 mixed norm) reads

W +
1

Λn

T∑
t=1

KX
t WK̃Y

t − V, (5.12)

while the proximal operator of the `2,1 mixed norm is

proxε ‖ · ‖2,1(W ) =

 |
proxε ‖ · ‖2(Wi:)

|

 =


|(

1− ε
‖Wi:‖2

)
+

Wi:

|

 =

 |
BST(Wi:, ε)

|

 .

Hence, even in the more involved case of an OVK satisfying Assumption 5.9, efficient
algorithms to compute the solutions to the dual problem exist. The next remark focuses
on the fact that the standard Kernel Ridge Regression is recovered when ε is set to 0.

Remark 5.20. Notice that the solution to Problem (5.9) for ε = 0 is exactly that of the
standard Ridge Regression. Indeed, coming back to Problem (5.10) and differentiating
with respect to Ω, one gets:

K̃Ω̂KY −KY = 0 ⇐⇒ Ω̂ = K̃−1,

which is exactly the standard Kernel Ridge Regression solution (Brouard et al., 2016b).

5.3.2 The Huber Loss Regression

Another framework that nicely falls into our generic resolution methodology is the Huber
loss regression scheme (Huber, 1964). Tailored to induce robustness, it is based on the
following loss function.

Definition 5.21. The κ-Huber loss is defined as `H,κ(y) =
(
κ‖ · ‖Y � 1

2‖ · ‖2Y
)

(y), or
again:

∀y ∈ Y, `H,κ(y) =


1
2‖y‖2Y if ‖y‖Y ≤ κ

κ
(
‖y‖Y − κ

2

)
otherwise
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Figure 5.2 – Standard squared norm and Huber loss in 1 and 2 dimensions, κ = 0.8.

Due to its asymptotic behavior as ‖ · ‖Y , the Huber loss is particularly useful when the
training data is heavy tailed or contains outliers. Examples of the Huber loss in one
and two dimensions are depicted in Figure 5.2. The following theorem explicits the dual
problem for the Huber loss and identity decomposable kernels.

Theorem 5.22. For an identity decomposable OVK K, the solution to the Huber loss
regression problem

min
h∈HK

1

n

n∑
i=1

`H,κ(h(xi)− yi) +
Λ

2
‖h‖2HK ,

is given by Equation (5.5), with Ω̂ = ŴV −1, and Ŵ the solution to the constrained least
squares problem

min
W∈Rn×n

1

2

∥∥AW −B∥∥2

Fro
,

s.t. ‖W‖2,∞ ≤ κ,
(5.13)

with V , A, and B as in Theorem 5.19.

Proof. Basic manipulations give the Fenchel-Legendre transform of the Huber loss:(
y 7→ `H,κ(y − yi)

)?
(α) =

(
κ‖ · ‖Y �

1

2
‖ · ‖2Y

)?
(α) +

〈
α, yi

〉
Y ,

=
(
κ‖ · ‖Y

)?
(α) +

(
1

2
‖ · ‖2Y

)?
(α) +

〈
α, yi

〉
Y ,

= χBκ(α) +
1

2
‖α‖2Y +

〈
α, yi

〉
Y .

The rest of the proof is similar to that of Theorem 5.19, except that the `2,1 mixed
norm ‖W‖2,1 is replaced by constraints on the norms of W ’s lines.

Again, the complex dual problem in Yn boils down to a well known tractable one in
Rn×n. Problem (5.13) can be solved by Projected Gradient Descent (PGD) for instance.
See Algorithm 5.2, with γ a predefined stepsize, and Proj the Projection operator such
that Proj(x, τ) = min(τ/‖x‖, 1) ·x. Analogously to Theorem 5.19, Problem (5.13) for a



CHAPTER 5. DUALIZING OPERATOR-VALUED KERNEL MACHINES 92

Algorithm 5.2 Projected Gradient Descent (PGD)
input : Gram matrices KX , KY , parameters Λ, κ
init : K̃ = 1

ΛnK
X + In, KY = V V >, W = 0Rn×n

10 while stopping criterion False do
11 W = W − γ(K̃W − V ) // gradient step

12 for row i from 1 to n do
13 Wi: = Proj

(
Wi:, κ

)
// projection step

14 return W

kernel fulfilling Assumption 5.9 is more complex to write, but not to solve. It rewrites

min
W∈Rn×n

1

2
Tr(WW T ) +

1

2Λn

T∑
t=1

Tr(KX
t WK̃Y

t W
>)−Tr

(
V >W

)
,

s.t. ‖Wi:‖2 ≤ κ ∀i ≤ n,

The gradient term is again given by Equation (5.12), while the projection remains
unchanged. The only change thus occurs in the gradient step of Algorithm 5.2, with a
replacement by the above formula.

The two regression frameworks detailed in Sections 5.3.1 and 5.3.2 have interesting
applications in structured prediction and structured representation learning, that are
to be detailed now.

5.3.3 Applications

The ability to predict in infinite dimensional Hilbert spaces unlocks many applications,
such as structured prediction and structured representation learning. In this section,
we give a formal description of these tasks, and highlight the benefit of using the losses
we have defined earlier.

Structured Prediction. Assume one is interested in learning a predictive decision
rule f from a set X to a complex structured space Z. To bypass the absence of norm on
Z, one may design a (scalar) kernel k on Z, whose canonical feature map φ : z 7→ k(·, z)
transforms any element of Z into an element of the (scalar) RKHS associated to k,
denoted Y (= Hk). One may then use the vv-RKHS theory to learn a predictive
function h from X to Y, as in the previous sections:

ĥ = argmin
h∈HK

1

n

n∑
i=1

`
(
h(xi), φ(zi)

)
+

Λ

2
‖h‖2HK . (5.14)

Once the function ĥ is learned, the final predictions in Z are obtained by solving the
inverse problem:

f(x) = argmin
z∈Z

‖φ(z)− ĥ(x)‖Y .

The whole procedure is depicted in Figure 5.3. While previous works are restricted
to identity decomposable kernels with the standard Ridge regression (Brouard et al.,
2016b), the duality framework we have developed allows for many more losses and
kernels. The use of an ε-insensitive loss in Problem (5.14), in particular, seems all the
more adequate as the criterion is not the final task targeted, but rather a surrogate
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Figure 5.3 – Output Kernel Regression

one. Indeed, inducing small mistakes, that does not harm the inverse problem, while
improving generalization, sounds as a suitable compromise. The Huber loss, that does
not penalize heavily big errors, benefits from the same type of arguments. Experimental
results endorsing the soundness of these new losses are presented in Section 5.5.

Structured Representation Learning. Extracting vectorial representations from
structured inputs is another task that can be tackled through vv-RKHSs. If standard
neural net functions are not able to produce reconstructions in the input space, because
the latter is to complex for instance, it is still possible to embed the datapoints into a
Hilbert space. Then, composing functions in vv-RKHSs results in a Kernel Autoencoder
(KAE, Figure 5.4) that outputs finite codes by minimizing the (regularized) discrepancy:

1

2n

n∑
i=1

‖φ(xi)− f2 ◦ f1(φ(xi))‖2Y + Λ Reg(f1, f2). (5.15)

Again, this criterion is not the real goal, but rather a proxy to make the internal
representation meaningful. Therefore, all incentives to use ε-insensitive losses or the
Huber loss still apply. The induced ε and Huber KAEs, obtained by changing the loss in
Problem (5.15), are optimized following Algorithm 5.3. The layers are fully characterized
by coefficients Φ1 and Φ2 (Theorem 4.1, and Sections 4.3 and 4.4). Coefficients Φ1 are
finite dimensional, and can be updated by Gradient Descent. Coefficients Φ2 are infinite
dimensional, but reparametrized into W2, which is updated through the BCD or PGD
of Algorithms 5.1 and 5.2. Empirical benefits of these losses for KAE are highlighted
by Section 5.5’s experiments. Notice that the alternate approach can be replaced by a
full Gradient Descent strategy, as all parameters (Φ1, W2) are now finite dimensional.

Algorithm 5.3 ε-Insensitive and Huber KAEs
input : Gram matrix KX , Λ, ε or κ
init : KX = V V >, Φ1 = Φinit

1 , W2 = 0Rn×n

15 while stopping criterion False do
// Φ1 update at fixed W2

16 Φ1 = Φ1 − γ ∇Φ1

(
Reconstruction | W2

)
17 Compute K2(Φ1)

// W2 update at fixed Φ1

18 W2 = BCD(K2,K
X ,Λ, ε) // if ε-insensitive

19 W2 = PGD(K2,K
X ,Λ, κ) // if Huber

20 return Φ1, W2
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Complex Structured Input
x ∈ X

Finite Dimensional Representation

φ(x)1

φ(x)2

φ(x)3
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φ(x) ∈ Y

z ∈ R2

φ(x) ∈ Y

Figure 5.4 – 2-Layer Kernel Autoencoder

5.4 Handling Integral Losses

When the loss ` does not depend directly upon the scalar product or the norm in Y,
the assumptions developed in Section 5.2 to prove Theorem 5.13 are hard to verify. The
dual problem is then seemingly intractable, as no decomposition of the (αi)

n
i=1 on a

finite basis can be exhibited. Moreover, the Fenchel-Legendre transforms `?i may not be
computable due to a lack of compatibility between `i and the scalar product in Y.
Integral losses over function spaces stand as good examples of such a case. These
losses, depicted in Equation (5.16), are key to solve function-to-function regression tasks
(see Ramsay and Silverman (2007) for an extensive description of challenges involving
functional data analysis), as well as continuums of tasks (Brault et al., 2019). Such
losses take the form

l : L2[Θ, µ]× L2[Θ, µ]→ R

(f, g) 7→
∫

Θ
lθ(f(θ), g(θ))dµ(θ). (5.16)

where µ is a probability measure over some compact set Θ ⊂ R, and lθ : R× R→ R is
a family of loss functions indexed by θ ∈ Θ, such that l is well defined.

In our setting, Y is a space of functions defined over Θ which can be continuously
embedded into L2[Θ, µ] by means of an inclusion operator I. For all g ∈ L2[Θ, µ], lg
relates to l(·, g) and `g = lg ◦ I is the loss function at point g defined on Y. Given
that (xi, yi)

n
i=1 ∈ X × L2[Θ, µ] are i.i.d. samples, the problem within the empirical risk

minimization framework reads

min
h∈HK

1

n

n∑
i=1

`yi(h(xi)) +
Λ

2
‖h‖2HK . (5.17)

Note that the (yi)
n
i=1 are functions which do not necessarily belong to Y, since Y is the

output space of the candidate functions within the vv-RKHS HK. Below, we give a few
examples of family of losses (lθ)θ∈Θ, and emphasize on the usefulness of the associated
Problem (5.17). Again, similar descriptions can be found in Section 2.2.2, but they are
recalled here for self-containedness and clarity. For each example, Θ = [0, 1].



CHAPTER 5. DUALIZING OPERATOR-VALUED KERNEL MACHINES 95

• lθ(s, t) = 1
2(s − t)2. This setting corresponds to the Ridge regression in the

function-valued regression framework. Especially, it coincides with Kadri et al.
(2016) when the (xi)

n
i=1 are functions.

• lθ(s, t) = max (θ(t− s), (θ − 1)(t− s)). This loss function, called the pinball loss
(Koenker, 2005), is used at fixed θ to perform conditional quantile regression of
random variables X,Y ∈ Rd×R from i.i.d. samples (xi, yi)

n
i=1. The minimization

of its integral counterpart yields an estimate of the conditional quantile function
when applied to (xi, yi)

n
i=1, the (yi)

n
i=1 being considered as constant functions in

L2[Θ, µ].

• lθ(s, t) = |θ − 1{−1}(t)|max (0, 1− ts). Given θ ∈ [0, 1], this loss function is
used in cost-sensitive classification (Zadrozny and Elkan, 2001). The coefficient
|θ − 1{−1}(t)| is asymmetric with respect to the two classes t ∈ {−1, 1}. It models
a different impact for mistakes committed on one class or another. Minimizing
the integral loss lifts the need to choose the asymmetric coefficient, rarely known
in practice, and allows a practitioner to evaluate the effect of this asymmetry
posterior to the learning phase, since the algorithm outputs a maximum-margin
classifier as a function of θ.

Dualization of Problem (5.17) is performed exactly the same way than in Theorem 5.7
and leads to Problem (5.4). The choice ofHK has to be driven by the feasibility of solving
the dual problem in Yn, as well as being large enough to model the target function.
OVKs of the form K(x, z) = kX (x, z)IHk , where kX and k are scalar kernels respectively
defined on X × X and Θ×Θ are legitimate candidates for this (see Remark 5.23).

Remark 5.23. The framework of vv-RKHS enjoys a nice interpretation when the kernel
is separable. Let k : Θ × Θ → R be a (scalar) kernel, and Hk its associated RKHS.
Then, choosing Y = Hk, the vv-RKHS associated to the identity decomposable OVK
K = kX IHk is isomorphic to the tensor product HkX ⊗ Hk, so that functions in HK
may be seen as functions of two variables (x, θ) in the (scalar) RKHS associated to the
kernel kX · k (Carmeli et al., 2010).

Before providing an expression of the Fenchel-Legendre transform of integral losses, we
recall few properties of RKHSs (see Steinwart and Christmann (2008)) that are useful
to solve Problem (5.4). Let Θ be a compact subset of R and k : Θ×Θ→ R be a positive
definite kernel, associated to the RKHS Hk.

Assumption 5.24. The kernel k is continuous.

Proposition 5.25. Grant Assumption 5.24. Then Hk is a subspace of L2[Θ, µ] and
the canonical inclusion Ik : Hk → L2[Θ, µ] is a bounded operator whose adjoint denoted
Tk : L2[Θ, µ]→ Hk is given for all g ∈ L2[Θ, µ] by Tkg =

∫
Θ k(·, θ)g(θ)dµ(θ).

In particular, Proposition 5.25 ensures that for all (α, g) ∈ Hk × L2[Θ, µ], it holds
〈α, Tkg〉Hk = 〈α, g〉L2[Θ,µ]. Continuity of k also grants a spectral decomposition for its
integral operator, as stated in Proposition 5.26.

Proposition 5.26. Assume that Assumption 5.24 holds. Denote by Lk = IkTk. There
exist an orthonormal basis (ψm)∞m=1 of L2[Θ, µ], and some (λm)∞m=1 ∈ R+ ordered in a
non-increasing fashion and converging to zero such that Lk =

∑∞
m=1 λmψm ⊗ ψm.
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Remark 5.27. Even though each ψm is defined up to a null µ-set, it is convenient to
work with some ψ̃m belonging to both Hk and the equivalence class in L2[Θ, µ] of ψm,
which is assumed afterwards.

Assumption 5.28. Measure µ is non-degenerate: Supp(µ) = Θ.

Assumption 5.29. The kernel k is universal, i.e. Hk is dense in the set of continuous
functions from Θ to R.

Proposition 5.30. Grant Assumptions 5.24 and 5.28. Then, operator Tk is surjective.
If furthermore Assumption 5.29 is satisfied, then Tk is bijective.

Lemma 5.31 below uses the aforementioned assumptions to link the Fenchel-Legendre
transforms of `y and ly.

Lemma 5.31. Let l : L2(Θ, µ) × L2(Θ, µ) → R be a continuous loss function. Under
Assumptions 5.24, 5.28 and 5.29, it holds

∀y ∈ L2(Θ, µ), `?y = l?y ◦ T−1
k . (5.18)

Proof. Define ly : g ∈ L2[Θ, µ] 7→
∫
θ `θ(g(θ), y(θ))dµ(θ) so that `y = ly ◦ Ik. Let α ∈ Hk.

Using the bijectivity of Tk, one gets:

(ly ◦ Ik)?(α) = sup
ξ∈Hk

〈α, ξ〉Hk − ly ◦ Ik(ξ)

= sup
ξ∈Hk

〈Tk(Tk)−1(α), ξ〉H‖ − ly ◦ Ik(ξ)

= sup
ξ∈Hk

〈(Tk)−1(α), Ik(ξ)〉L2[(0,1)] − ly ◦ Ik(ξ).

Since ξ 7→ 〈(Tk)−1(α), Ik(ξ)〉L2[Θ,µ]− ly ◦Ik(ξ) is continuous, and Hk is dense in L2[Θ, µ]
(Carmeli et al., 2010), it holds that

sup
ξ∈Hk

〈(Tk)−1(α), Ik(ξ)〉L2[Θ,µ] − ly ◦ Ik(ξ) = sup
f∈L2[Θ,µ]

〈(Tk)−1α, f〉L2[Θ,µ] − ly(f)

which gives (ly ◦ Ik)? = l?y ◦ (Tk)
−1.

Lemma 5.31 makes explicit the relationship between `?y and l?y. It turns out that the
scalar product in L2[Θ, µ] is well suited to ly, so that l?y admits a simple expression, as
stated by the theorem below.

Theorem 5.32. Let lθ : R×R→ R be a family of loss functions indexed by θ ∈ Θ. Let
(y, g) ∈ L2[Θ, µ]× L2[Θ, µ]. If

∫
Θ min (0, l?θ,y(θ)(g(θ)))dµ(θ) > −∞, then

l?y(g) =

∫
Θ
l?θ,y(θ)(g(θ))dµ(θ). (5.19)

where ∀t ∈ R, l?θ,t stands for lθ(·, t)?.
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Proof. Recall that ly : g ∈ L2[Θ, µ] 7→
∫
θ lθ(g(θ), y(θ))dµ(θ). Let f ∈ L2[Θ, µ].

l?y(f) = sup
g∈L2[Θ,µ]

〈f, g〉L2[Θ,µ] − ly(g)

= sup
g∈L2[Θ,µ]

∫
Θ
f(θ)g(θ)dµ(θ)−

∫
Θ
lθ(g(θ), y(θ))dµ(θ)

= sup
g∈L2[Θ,µ]

∫
Θ
f(θ)g(θ)− lθ(g(θ), y(θ))dµ(θ)

≤
∫

Θ
sup
t∈R

f(θ)t− lθ(t, y(θ))dµ(θ)

≤
∫

Θ
l?θ,y(θ)(f(θ))dµ(θ),

where ∀s ∈ R, l?θ,s stands for lθ(·, s)?. Since
∫

Θ min (0, `?θ,y(θ)(f(θ)))dµ(θ) > −∞, it
holds that

∫
Θ `

?
θ,y(θ)(f(θ))dµ(θ) ∈]−∞,+∞] is well defined, and equality is attained.

Remark 5.33. The instantiation of Equation (5.19) for specific loss functions gives:

• When lθ(s, t) = 1
2(t− s)2, ∀(y, g) ∈ (L2[Θ, µ])2,

l?y(g) =
1

2
‖g‖2L2[Θ,µ] + 〈g, y〉L2[Θ,µ]

• When lθ(s, t) = max (θ(t− s), (θ − 1)(t− s)), for all g ∈ L2[Θ, µ], and y constant
in L2[Θ, µ],

l?y(g) = χθ−1≤·≤θ(g) + y

∫
Θ
g(θ)dµ(θ)

where χθ−1≤·≤θ is to be understood in L2[Θ, µ], that is up to a null µ-set.

• When lθ(s, t) = |θ − 1{−1}(t)|max (0, 1− ts), for all g ∈ L2[Θ, µ], and y = ±1
constant in L2[Θ, µ],

l?y(g) = y

∫
Θ
g(θ)dµ(θ) + χ0≤·≤|θ−1{−1}(y)|(−yg)

The key idea of the approach is then to find good candidates (gi)
n
i=1 ∈ L2[Θ, µ] such

that (αi)
n
i=1 = (Tkgi)

n
i=1 ∈ Hk are close to the solution of the dual problem.

Theorem 5.34. Let K = kX IHk be an OVK such that k satisfies Assumptions 5.24
and 5.29. Assume also that Assumption 5.28 holds. The solution to Problem (5.17) is
then given by

ĥ =
1

Λn

n∑
i=1

kX (·, xi)Tkĝi

with (ĝi)
n
i=1 ∈ (L2[Θ, µ])n minimizing

n∑
i=1

l?yi(−gi) +
1

2Λn

n∑
i,j=1

kX (xi, xj)〈gi, Lkgj〉 (5.20)

Proof. Use αi = Tkgi for i ≤ n, and Equation (5.18).
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Although Problem (5.20) phrases the optimization problem in a new space, it remains
hard to solve since L2[Θ, µ] is infinite dimensional. To circumvent this difficulty, the
research of the (gi)

n
i=1 will be performed in a finite dimensional subspace adapted to

the problem, namely span{ψm,m ≤ M}, where {ψm}, m ≤ M are the eigenvectors
associated to theM largest eigenvalues of Lk. With the notation S = diag(λm,m ≤M),
an approximate dual problem reads:

min
β∈Rn×M

n∑
i=1

l?yi

− M∑
m=1

βimψm

+
1

2Λn
Tr
(
KXβSβ>

)
. (5.21)

Remark 5.35. The eigendecomposition of Lk is dependent both in k and µ, and can
be approximately solved using the Galerkin method (Chatelin, 2011), or by solving a
differential equations derived from the eigenvalue problem. However, given that the
optimal kernel k is unknown, one can choose a Hilbertian basis {ψm}∞m=1 of L2[Θ, µ]
and a non-increasing sequence (λm)∞m=1 ∈ R∗+ to construct the kernel k, which gives
direct access to the eigendecomposition of Tk.

Below are presented ways to solve Problem (5.21) for various loss functions. In the
following, R ∈ Rn×M refers to the matrix such that for all i ≤ n, and all m ≤ M ,
Rim = 〈ψm, yi〉L2[Θ,µ].

Ridge Regression. When lθ(s, t) = 1
2(t− s)2, Problem (5.21) reads

min
β∈Rn×M

Tr

(
1

2
ββ> +

1

2Λn
KXβSβ> − βR>

)
, (5.22)

so that it boils down to the minimization of a quadratic form. Setting the gradient
to zero yields a solution β̂ = (I + KX/(Λn) ⊗ S)−1R, where KX ⊗ S is the block
operator matrix such that (KX ⊗ S)ij = kX (xi, xj)S. The inversion of this operator
can be performed using its spectral decomposition, and β̂ coincides with the closed-form
solution given in (Kadri et al., 2016).

Dealing with Lipschitz Losses. When (lθ)θ∈Θ is a family of Lipschitz loss functions,
l?y(g) may take +∞ as value if g is not in the feasible set of the dual problem. This
induces an additional difficulty to the resolution of Problem (5.21), since the finite
dimensional space span{ψm,m ≤M} may not be stable with respect to the projection
on the feasible set, which annihilates any hope for a vanilla proximal gradient descent.

Application to Huber Loss. Function-to-function regression has mainly been dealt
with through the minimization of an empirical L2 risk. However, in the spirit of
Section 5.3.2, this task can be tackled using a Huber loss, which induces robustness.
The approximate dual problem is then Problem (5.22) under the additional constraint
that ‖β‖2,∞ ≤ κ, and it can be solved through PGD. Experimental results endorsing
this approach are presented in section 5.5.

5.5 Numerical Experiments

Numerical experiments have been run in order to show the benefit of using more
sophisticated losses than the standard squared norm in output Hilbert spaces. We
focus on three applications: structured prediction, structured representation learning,
and functional regression.
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(a) Top-1 Accuracy, linear scale
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(b) Top-1 Accuracy, logarithmic scale
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(c) Top-10/20 Accuracies, linear scale
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Figure 5.5 – ε-Insensitive Output Kernel Regression Results

κ Top 1 Top 10 Top 20 ‖W‖2,1
0.5 38.0 83.5 89.6 2789.6
1.0 38.9 83.8 89.9 5572.4
1.5 38.6 83.7 89.8 8231.9

Table 5.1 – Huber test accuracies (%) with respect to κ

Structured prediction. We consider the problem of identifying metabolites based on
their mass spectra (Brouard et al., 2016a). We investigate the advantages of substituting
the standard Ridge Regression for its ε-insensitive version or a Huber regression. Outputs
(metabolites) are embedded into an infinite dimensional Hilbert space by means of a
Tanimoto-Gaussian kernel with 0.72 bandwidth. The data is composed of 6974 mass
spectra, and algorithms are compared through the top-k accuracies, k = 1, 10, 20.

As expected, a wide range of ε’s induce substantial improvements compared to Ridge
Regression (see Figure 5.5). This improvement comes with a norm reduction until the
collapsing point at ε = 1. The Huber results are gathered in Table 5.1, showing valuable
gains for all κ’s.

Structured representation learning. Again, the introduction of an ε-insensitive
algorithm allows to improve generalization while inducing sparsity (Figure 5.6). This
makes the ε-insensitive framework particularly promising in the context of surrogate
approaches.
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Figure 5.6 – Test Mean Squared Error (MSE) w.r.t. ε.

Figure 5.7 – LOO error with respect to κ.

Function-to-Function Regression. Our goal here is to predict lip acceleration from
electromyography (EMG) signals (Ramsay and Silverman, 2007). The dataset consists
of 32 records of the trajectory of the lower lip associated to EMG records of the muscle
that controls it, augmented by 4 outliers to assess the robustness of our approach. We
solve Problem (5.21) with a Huber loss for various levels κ. Usefulness of minimizing
the Huber loss is illustrated in Figure 5.7 by computing the Leave-One-Out (LOO)
generalization error associated to each model. Models trained with Huber loss may
generalize better depending on κ. As κ grows larger than κmax, the constraint on ‖β‖2,∞
becomes void and we recover the Ridge Regression solution. We used kX (x1, x2) =∫ 1

0 exp (|x1(θ)− x2(θ)|)dθ, (ψm)Mm=1 the harmonic basis in sine and cosine of L2[0, 1],
(λm)Mm=1 = (1/(m+ 1)2)Mm=1 and M = 16.



CHAPTER 5. DUALIZING OPERATOR-VALUED KERNEL MACHINES 101

5.6 Conclusion

This chapter presents an extended analysis of the duality principle within vv-RKHSs,
allowing for the use of new loss functions. The particular case of convolved losses is
tackled, offering novel ways to enforce sparsity and robustness. This opens an avenue for
new applications on structured data (e.g. anomaly detection, robust prediction), whose
generalization guarantees remain to be investigated. The use of kernel approximations,
such as Random Fourier Features (Rahimi and Recht, 2008; Brault et al., 2016) or
Nyström’s method (Williams and Seeger, 2001) represent a promising research direction,
as the analysis presented in this chapter would benefit twice from it: in input and in
output. These new loss functions can be applied at the last layers of deep kernel
architectures developed in Chapters 3 and 4, enriching their framework. The Double
Representer Theorem ensures a finite dimensional parametrization even when outputs
are infinite dimensional (through the Ω matrix rather than the infinite dimensional
coefficients ϕL,i). This suggests new algorithms to optimize deep kernel machines,
based on full Gradient Descent strategies.
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The second part of this manuscript investigates alternatives to the sample mean as
substitutes to the expectation in the Empirical Risk Minimization (ERM) framework.

As a reminder, given Sn = {(xi, yi)i≤n} ∈ (X × Y)n an i.i.d. sample distributed as P ,
and a hypothesis set H ⊂ YX , the ERM paradigm consists in replacing

min
h measurable

R(h) = EP
[
`
(
h(X), Y

)]
by min

h∈H
R̂n(h) =

1

n

n∑
i=1

`
(
h(xi), yi

)
.

In Part I, we have focused on a specific choice of hypothesis set H. The goal of Part II is
to address the other approximation made during the transformation of the ideal problem
into a computable one: the replacement of the unknown expectation by the empirical
mean. Indeed, this implicitly assume that the empirical mean is a good estimate of
the expectation. However, in many practical use cases (e.g. heavy-tailed distribution,
presence of outliers, biased training data), this is not the case.

As a first go, Chapter 6 collects some basic notions about U -statistics, which are crucial
tools when studying pairwise learning criteria. Their strong concentration properties
are incidentally needed to analyze the mean estimators introduced in the next chapter.

The Median-of-Means is indeed a robust mean estimator at the core of Chapter 7. Its
basic principle, taking the median of smaller independent estimators, is then extended
both to randomization and U -statistics. This results in several novel (pairwise) mean
estimators with provable guarantees, except for the Median-of-Incomplete-U -Statistics.

By their construction, Median-of-Means-like estimators exhibit interesting robustness
properties. This is further exploited in Chapter 8, where Median-of-Means minimizers
are shown to behave well in presence of outliers. As for the Median-of-Means tournament
procedure, it yields strong guarantees under mild assumptions on distribution P . Both
approaches are extended to U -statistics, allowing for robust pairwise learning strategies.

Finally, Chapter 9 addresses a totally different issue: that of sample bias. If training
data comes from several biased samples, computing blindly the empirical mean yields a
biased estimate of the risk. Alternatively, from the knowledge of the biasing functions,
it is possible to reweight observations so as to build an unbiased estimate of the test
distribution. The known asymptotic guarantees are first made non-asymptotic, and
then translated into guarantees for the debiased risk minimizers. This new framework
provides a general adaptation of the ERM paradigm to the case of biased data.
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As seen in Chapter 1, a vast majority of machine learning problems may be cast as the
following problem:

min
h measurable

EZ∼P
[
`(h, Z)

]
,

with ` a loss function, and the notation abuse `(h, z) for `(h(x), y). As P is unknown
in practice, the Empirical Risk Minimization (ERM) approach suggests solving instead

min
h∈H

1

n

n∑
i=1

`(h, zi),

where {zi}i≤n are n i.i.d. realizations of Z, and H ⊂ YX the hypothesis set. However,
not all machine learning problems can be reduced to a simple empirical mean. Indeed, in
cases such as ranking ormetric learning for instance, one compares pairs of observations.
The objective one would ideally optimize then reads

min
h∈H

EZ,Z′∼P⊗P
[
`(h, Z, Z ′)

]
.

To adapt the ERMmethodology, one then needs an unbiased estimator of an expectation
over two independent identically distributed random variables. This is precisely the
purpose of U -statistics, introduced by Wassily Hoeffding in the 1940s (Hoeffding, 1948),
with U standing for unbiased, to furnish such estimators.

After having formally defined U -statistics in their most general form in Section 6.1,
we exhibit in Section 6.2 several cases, both in statistics and machine learning, where
U -statistics are typically used. Section 6.3 is devoted to properties of U -statistics that
are used in the proofs of Chapters 7 and 8, while in Section 6.4 are presented extensions
around U -statistics that incidentally appear in further chapters.
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6.1 Definition

As a first go, let us recall the definition of a generalized U -statistic of arbitrary degree.

Definition 6.1. Let d ∈ N∗, and {Zi}i≤n be a collection of n ≥ d i.i.d. random
variables, valued in some metric space Z, with distribution F (dz). Let h : Zd → R be a
measurable function, square integrable with respect to the probability distribution F⊗d.
Assume in addition (without loss of generality) that h is symmetric in its d arguments.
The U -statistic of degree d with kernel h is then defined as

Un(h) =
1(
n
d

)∑
I

h
(
ZI1 , . . . , ZId

)
,

where the symbol
∑

I refers to the summation over all unordered subsets I = {I1, . . . , Id}
of d integers chosen in {1, . . . , n}.

One may see that Definition 6.1 already generalizes the standard sample mean, that
is obtained with d = 1, and h(z) = z. However, U -statistics can be made even more
general by involving several samples. For the sake of completeness, we also define such
multisample U -statistics, although most statistical learning applications only require the
single sample version. Unless otherwise specified, all subsequent analyses and properties
are established for single sample U -statistics.

Definition 6.2. Let S ≥ 1 and (d1, . . . , dS) ∈ N∗S. Let Z{1,...,ns} = (Z
(s)
1 , . . . , Z

(s)
ns ),

for s ≤ S, be S independent samples of sizes ns ≥ ds and composed of i.i.d. random
variables valued in some measurable spaces Zs with distribution Fs(dz) respectively. Let
h : Zd1

1 × . . . × ZdSS → R be a measurable function, square integrable with respect to
the probability distribution F⊗d1

1 ⊗ . . . ⊗ F⊗dSS . Assume in addition (without loss of
generality) that h is symmetric within each block of argument Z(s) valued in Zdss , for
s ≤ S. The generalized (or S-sample) U -statistic of degrees (d1, . . . , dS) with kernel h
is then defined as

Un(h) =
1∏S

s=1

(
ns
ds

)∑
I1

. . .
∑
IS

h

(
Z

(1)
I1
, . . . ,Z

(S)
IS

)
,

where the symbol
∑

Is
refers to the summation over all

(
ns
ds

)
subsets Z(s)

Is
= (Z

(s)
i1
, . . . , Z

(s)
ids

)

related to a set Is of ds indexes 1 ≤ i1 < . . . < ids ≤ ns, and n = (n1, . . . , nS).

In order to provide more intuition on these notions, we continue by giving examples of
U -statistics, both in the statistics and statistical learning literatures.

6.2 Examples

As already mentioned, the standard sample mean is a particular instance of a U -statistic.
However, more convincing and illustrative examples are to be listed now.

6.2.1 Occurrences in Statistics

We start by giving three examples taken from the statistics literature. Each one has its
specificity, as there is one U -statistic of degree 2, one U -statistic based on non-scalar
observations, and one multisample U -statistic.
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Sample Variance. A very classical example is the empirical variance. Given a sample
{Zi}i≤n, it reads

σ̂2
n =

1

n(n− 1)

∑
1≤i<j≤n

(Zi − Zj)2,

which is a one sample U -statistic of degree 2, with kernel h(z, z′) = (z − z′)2/2.

Kendall’s τ . Definitions 6.1 and 6.2 do not require observations to be real-valued. Let
{Zi = (Xi, Yi)}i≤n be a sample of n i.i.d. bivariate random vectors. In order to measure
pairs concordance, one may compute Kendall’s τ , which reads

τ =
4

n(n− 1)

∑
1≤i<j≤n

1

{
(Yj − Yi)(Xj −Xi) > 0

}
− 1.

This is a one sample U -statistic of degree 2 with kernel h(z, z′) = h((x, y), (x′, y′)) =
2 · 1{(y′ − y)(x′ − x) > 0} − 1. A Kendall’s τ close to 1 means that pairs are globally
concordant, while a value close to −1 suggests a negative dependence, and a value
around 0 is a sign of independence.

Mann-Whitney Statistic. Assume now that our goal is to estimate θ = P{Z ≤ Z ′},
for two random variables Z and Z ′. Given two i.i.d. samples {Zi}i≤m and {Z ′j}j≤n,
distributed as Z and Z ′ respectively, the natural empirical estimator of θ, called the
Mann-Whitney statistic, is

θ̂m,n =
1

m n

m∑
i=1

n∑
j=1

1

{
Zi ≤ Z ′j

}
.

This statistic is an example of a two samples U -statistic of degrees (1, 1).

U -statistics are also present in the statistical learning literature. Indeed, following
the Empirical Risk Minimization paradigm, one is often encouraged to minimize the
empirical version of the risk. Even if most of the times this empirical risk takes the
form of a simple empirical mean, there are still many situations in which the summation
is done over pairs of observations. It is the purpose of the following subsection to present
three examples of learning problems that write as a U -statistic.

6.2.2 Occurrences in Statistical Learning

Although less ubiquitous in the statistical learning literature than standard empirical
means, U -statistics are nonetheless perfectly suited to describe and tackle many learning
tasks. Three of them are now to be described, that write as one sample U -statistics of
degree 2.

Clustering. In clustering, the goal is to find a partition P of the feature space Z so that
pairs of observations independently drawn from a certain distribution F on Z within a
same cell of P are more similar with respect to a given metric d : Z2 → R+ than pairs
lying in different cells. Let ΦP(z, z′) =

∑
C∈P 1{(z, z′) ∈ C2} for a partition candidate

P. Based on an i.i.d. training sample Z1, . . . , Zn, the Empirical Risk Minimization
paradigm leads to minimizing the U -statistic, referred to as empirical clustering risk
(see Clémençon (2014) and references therein):

Ŵn(P) =
2

n(n− 1)

∑
1≤i<j≤n

d(Zi, Zj) · ΦP(Zi, Zj).
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Metric Learning. In metric learning (Bellet et al., 2015), one goes the other way
around. From given similarities (e.g. pertaining to the same cell, being sampled from
the same class), the practitioner aims at learning a metric d : X × X → R+, such that
points supposedly close are also similar with respect to d. Given a sample {(Xi, Yi)}i≤n,
drawn i.i.d. from a random pair (X,Y ) valued in X × Y, one may construct a priori
similarities Yij (e.g. Yij = 2 ·1{Yi = Yj}−1 if the labels are classes) and then minimize,
for a given tolerance ε, the empirical risk:

R̂n(d) =
2

n(n− 1)

∑
1≤i<j≤n

1

{
Yij · (d(Xi, Xj)− ε) > 0

}
.

Apart from the monograph by Bellet et al. (2015), the interested reader may refer to
Bellet et al. (2013) and Bellet and Habrard (2015), that focus respectively on robustness
aspects and structured data in metric learning. Statistical perspectives may also be
found in Bellet et al. (2012), or more recently in Vogel et al. (2018), with a pointwise
optimization of the ROC curve.

Pairwise Ranking. In pairwise ranking, the objective is to learn from independent
labeled data (X1, Y1), . . . , (Xn, Yn), drawn as a generic random pair (X,Y ) ∈ X ×R, a
ranking rule r : X 2 → {−1, 0,+1} that permits to predict, among two objects (X,Y )
and (X ′, Y ′) chosen at random, which one is preferred: (X,Y ) is preferred to (X ′, Y ′)
when Y > Y ′ and, in this case, one would ideally have r(X,X ′) = +1, the rule r being
supposed anti-symmetric (i.e. r(x, x′) = −r(x′, x) for all (x, x′) ∈ X 2). This can be
formulated as the problem of minimizing the U -statistic known as the empirical ranking
risk (see Clémençon et al. (2005)):

L̂n(r) =
2

n(n− 1)

∑
1≤i<j≤n

1

{
r(Xi, Xj) · (Yi − Yj) ≤ 0

}
.

Now that U -statistics have been clearly defined and illustrated, we next focus on some
fundamental properties that are useful in further chapters.

6.3 Basic Properties

We address here two main topics: expectation and variance of a U -statistic, and its
concentration properties Extensions such as incomplete U -statistics and V -statistics
are deferred to Section 6.4.

6.3.1 Expectation and Variance

Introduced by Hoeffding in the 1940s (Hoeffding, 1948), U -statistics aims at estimating

θ(h) = E
[
h(Z1, . . . , Zd)

]
,

for a given symmetric kernel h, and i.i.d. random variables {Zi}i≤d. Given a sample
{Zi}i≤n with n ≥ d, a first unbiased estimator of θ is h(Z1, . . . , Zd). But this estimate
is unnatural as it does not use the full sample. To remedy this problem, one can
average this statistic over all unordered d-tuples pertaining to {1, . . . , n}, leading to
Definition 6.1. The obtained Un(h) is therefore also an unbiased estimator of θ (U stands
for unbiased), and one can prove that its variance is lower than that of h(Z1, . . . , Zd).



CHAPTER 6. REMINDERS ON U-STATISTICS 108

Indeed, since Un(h) is an average (over all permutations), it can be expressed as the
following conditional expectation

Un(h) = E
[
h(Z1, . . . , Zd) | Z(1), . . . , Z(n)

]
,

where Z(1), . . . , Z(n) denote the data Z1, . . . , Zn, but sorted in increasing order.

Then, Jensen’s inequality yields

Var
(
Un(h)

)
= E

[
(Un(h)− θ)2

]
,

= E

(E [h(Z1, . . . , Zd) | Z(1), . . . , Z(n)

]
− θ
)2
 ,

≤ E

E[(h(Z1, . . . , Zd)− θ
)2
| Z(1), . . . , Z(n)

] ,
≤ E

[(
h(Z1, . . . , Zd)− θ

)2
]
,

≤ Var
(
h(Z1, . . . , Zd)

)
.

It can further be shown by a Lehmann-Scheffé argument that Un(h) is the unbiased
estimator of θ(h) = E[h(Z1, . . . , Zd)] with minimal variance. Let us now investigate
more deeply the form taken by Var(Un(h)).

Var
(
Un(h)

)
= Cov

 1(
n
d

)∑
I

h
(
ZI1 , . . . , ZId

)
,

1(
n
d

)∑
I′

h
(
ZI′1 , . . . , ZI′d

) ,

=
1(
n
d

)2 ∑
I,I′

Cov

(
h
(
ZI1 , . . . , ZId

)
, h
(
ZI′1 , . . . , ZI′d

))
.

Given the symmetry of h, Cov(h(ZI1 , . . . , ZId), h(ZI′1 , . . . , ZI′d)) only depends on the
number of common variables in I and I ′. For c ≤ d, let ζc(h) = Cov(h(ZI1 , . . . , ZId),
h(ZI′1 , . . . , ZI′d)) when c variables are common. It is now enough to count how many
times each case occurs. One has

(
n
d

)
choices for variables in I,

(
d
c

)
choices for components

in I, and
(
n−d
d−c
)
choices for variables in I ′. Hence, noticing that ζ0(h) = 0, it holds

Var
(
Un(h)

)
=

1(
n
d

) d∑
c=1

(
d

c

)(
n− d
d− c

)
ζc(h). (6.1)

An upper bound can thus immediately be derived:

Var
(
Un(h)

)
=

d∑
c=1

d!2

c!(d− c)!2
(n− d)(n− d− 1) . . . (n− 2d+ c+ 1)

n(n− 1) . . . (n− d+ 1)
ζc(h), (6.2)

≤
d∑
c=1

d!2

c!(d− c)!2
ζc(h)

n(n− 1) . . . (n− c+ 1)
. (6.3)
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For the particular case d = 2, one can also use the Second Hoeffding’s Decomposition

Un(h)− θ(h) =
2

n

n∑
i=1

h1(Xi) +
2

n(n− 1)

∑
1≤i<j≤n

h2(Xi, Xj),

with

h1(Z1) = E
[
h(Z1, Z2) | Z1

]
− θ(h) σ2

1(h) = Var
(
h1(Z1)

)
, (6.4)

h2(Z1, Z2) = h(Z1, Z2)− h1(Z1)− h1(Z2)− θ(h) σ2
2(h) = Var

(
h2(Z1, Z2)

)
. (6.5)

It is then direct to see that

σ2(h) = Var
(
h(Z1, Z2)

)
= 2σ2

1(h) + σ2
2(h). (6.6)

and
Var

(
Un(h)

)
=

4

n
σ2

1(h) +
2

n(n− 1)
σ2

2(h). (6.7)

Notice that in general ζc(h) and σ2
c (h) are different. Indeed, one has

ζ2(h) = Cov
(
h(Z,Z ′), h(Z,Z ′)

)
= Var

(
h(Z,Z ′)

)
= σ2(h) = 2σ2

1(h) + σ2
2(h),

and

ζ1(h) = Cov
(
h(Z,Z ′), h(Z,Z ′′)

)
,

= E
[
h(Z,Z ′)h(Z,Z ′′)

]
− E

[
h(Z,Z ′)

]
E
[
h(Z,Z ′′)

]
,

= E
[
E
[
h(Z,Z ′)h(Z,Z ′′) | Z

]]
− θ2(h),

= E
[
E
[
h(Z,Z ′) | Z

]
E
[
h(Z,Z ′′) | Z

]]
− θ2(h),

= E
[
h1(Z)2

]
− E

[
h1(Z)

]2
,

= σ2
1(h).

Replacing these values in Equation (6.2), one recovers

Var
(
Un(h)

)
=

4(n− 2)

n(n− 1)
ζ1(h) +

2

n(n− 1)
ζ2(h),

=
4(n− 2)

n(n− 1)
σ2

1(h) +
2

n(n− 1)
(2σ2

1(h) + σ2
2(h)),

=
4

n
σ2

1(h) +
2

n(n− 1)
σ2

2(h).

Finally, the trick used to compute the variance of Un(h) can be readily applied to the
multisample setting. Denoting ζc1,...,cS (h) = Cov

(
h(Z

(1)
I1
, . . . ,Z

(S)
IS

), h(Z
(1)
I′1
, . . . ,Z

(S)
I′S

)
)

when cs variables are common in Is and I ′s for s ≤ S, one gets

Var
(
Un(h)

)
=

1∏S
s=1

(
ns
ds

)2 d1∑
c1=0

. . .

dS∑
cS=0

S∏
s=1

(
ns
ds

)(
ds
cs

)(
ns − ds
ds − cs

)
ζc1,...,cS (h). (6.8)
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So much care has been given to explicit U -statistics variances because they play a
crucial role for the estimators defined in the next sections, influencing for instance their
concentration rates. When dealing with U -statistics of degree 2, Equation (6.7) will be
preferred, while Equations (6.1) and (6.3) will be used to generalize to U -statistics of
arbitrary degree. Finally, although results for multisample U -statistics are not stated
in this manuscript, Equation (6.8) suggests that a careful analysis (in particular to the
different samples sizes) should lead to similar guarantees.

6.3.2 Concentration Properties

A first idea that comes to mind to derive concentration properties for U -statistics is the
bounded difference inequality (see Appendix A). Indeed, although the functional takes
the form of an average, the non independence between pairs that share an observation
prevents from the use of standard Hoeffding’s inequality. Thus, applying the bounded
differences inequality to a U -statistic of degree d and bounded kernel h in a direct
manner yields

P
{∣∣∣Un(h)− θ(h)

∣∣∣ > t

}
≤ 2 exp

(
− t2

2‖h‖2∞
n

d2

)
.

But the dependence in d may be improved, as revealed by the following proposition due
to Hoeffding.

Proposition 6.3. (Hoeffding’s Inequality for U -Statistics, Hoeffding (1963)). Let d ∈
N∗, {Zi}i≤n be n ≥ d independent realizations of a Z-valued random variable Z, and
h : Zd → R bounded such that E[h(Z1, . . . , Zd)] = θ(h). Then, with Un(h) defined as in
Definition 6.1, it holds for any t > 0

P
{∣∣∣Un(h)− θ(h)

∣∣∣ > t

}
≤ 2 exp

(
− t2

2‖h‖2∞
n

d

)
.

Notice that, similarly to the standard mean (Theorem 7.3), this bound requires h to
be bounded, which is not the case in general (e.g. variance of unbounded random
variable). The estimators presented in Chapter 7 remedy this limitation, and exhibit
similar exponential guarantees on the sole assumption that the second order moment of
h is finite. The interested reader may finally refer to Maurer et al. (2019) for a recent
extension of Bernstein’s inequality with applications to U -statistics concentration.

6.4 Extensions

This last section deals with important extensions around U -statistics. In Section 6.4.1
we focus on incomplete U -statistics, that aim at downscaling the computational cost of
U -statistics by sampling the pairs summed, instead of building all possible combinations.
Finally, Section 6.4.2 analyses V -statistics, that allow one observation to appear several
times in the kernel, inducing a more complex dependence structure.

6.4.1 Incomplete U-Statistics

One major practical drawback of U -statistics is their computational cost, as it involves
the summation of O(nd) terms, when d is the degree of the U -statistic. The concept
of incomplete U -statistic (Blom, 1976) precisely permits to address this computational
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Figure 6.1 – Incomplete U -statistic Procedure

issue and achieve a trade-off between scalability and variance reduction. In one of
its simplest forms (we focus here on the case d = 2), it consists in selecting a sub-
sample of size M ≥ 1 by sampling with replacement in the set of pairs of observations
that can be formed from the original sample (for sampling without replacement, refer
to e.g. Serfling (1974)). Setting Λ = {(i, j) : 1 ≤ i < j ≤ n}, and denoting by
{(i1, j1), . . . , (iM , jM )} ⊂ Λ the subsample drawn by Monte-Carlo, the incomplete
version of the U -statistic defined in Definition 6.1 is

ŨM (h) =
1

M

∑
m≤M

h(Xim , Xjm).

It is direct to see that ŨM (h) is also an unbiased estimator of θ(h) and that its variance
is necessarily larger than that of the complete U -statistic based on the full sample (as
it uses less pairs). Formally, one has

Var
(
ŨM (h)

)
=

(
1− 1

M

)
Var(Un(h)) +

σ2(h)

M
. (6.9)

Observe that the difference between the variances vanishes as M increases. In contrast,
ŨM (h) exhibits an interesting variance among estimates based onM pairs only. Indeed,
for a complete U -statistic to involve only M pairs, one has to select no more than√
M observations (roughly). Equation (6.7) indicates that the variance would be in
O(1/

√
M), where the incomplete U -statistic has a O(1/M) one. This difference is due

to the redundancy of the complete U -statistic, that always pairs the same observations,
while the incomplete version is allowed to browse the whole dataset. Refer to Figure 6.1,
reproduced from Clémençon et al. (2016), for a visual representation of the phenomenon.
This reduced variance property has major consequences, inducing for instance scalable
statistical learning strategies, such as that investigated in Clémençon et al. (2016). As
for practical applications, the interested reader may refer to Bertail and Tressou (2006)
for a nice utilization of incomplete U -statistics in food risk assessment.

6.4.2 V -statistics

The next and final topic we address is the analysis of the closely related V -statistics.
Named after Richard von Mises, these statistics are built exactly the same way as
U -statistics, except that they allow multiple replications of an observation within the
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kernel. Thus, for a V -statistic of degree d, the average is made over nd terms, rather
than

(
n
d

)
for the associated U -statistic. Let us give a formal definition.

Definition 6.4. Let d ∈ N∗, and {Zi}i≤n be a collection of n ≥ d i.i.d. random
variables, valued in some metric space Z, with distribution F (dz). Let h : Zd → R be a
measurable function, square integrable with respect to the probability distribution F⊗d.
Assume in addition (without loss of generality) that h is symmetric in its d arguments.
The V -statistic of degree d with kernel h is then defined as

Vn(h) =
1

nd

n∑
i1=1

. . .
n∑

id=1

h
(
Zi1 , . . . , Zid

)
.

Observe that the allowed replications completely break the independence assumption,
and consequently many proofs about U -statistics. Indeed, proofs often rely on a specific
representation of the U -statistic, written as the sum of independent random variables,
which is not possible here. Finally, notice that, although one cannot guarantee that
E[Vn(h)] = θ(h), deviation probabilities may still be easily obtained via the comparison
to the corresponding U -statistic.

Proposition 6.5. Let d ∈ N∗, {Zi}i≤n be n ≥ d independent realizations of a Z-valued
random variable Z, and h : Zd → R bounded such that E[h(Z1, . . . , Zd)] = θ(h). Then,
with Vn(h) as in Definition 6.4, it holds for any t > 0:

P

{∣∣∣Vn(h)− θ(h)
∣∣∣ > t+

d(d− 1)‖h‖∞
n

}
≤ 2 exp

(
− nt2

2d‖h‖2∞

)
.

Proof. First notice that n|Un(h) − Vn(h)| ≤ d(d − 1)‖h‖∞. Indeed, let Wn(h) denote
the average of all terms h(Zi1 , . . . , Zid) with equality ij = ik for at least one pair j 6= k.
One has

n∑
i1=1

. . .
n∑

id=1

h(Zi1 , . . . Zid) =
∑
i1,...id

j 6=k ⇒ ij 6=ik

h(Zi1 , . . . Zid) +
∑
i1,...id

∃j 6=k, ij=ik

h(Zi1 , . . . Zid),

ndVn(h) =
n!

(n− d)!
Un(h) +

(
nd − n!

(n− d)!

)
Wn(h),

so that it holds

nd(Un(h)− Vn(h)) =

(
nd − n!

(n− d)!

)
(Un(h)−Wn(h)).

One may easily show by recurrence that nd−n!/(n− d)! = nd−n(n− 1) . . . (n− d+ 1)
is positive and smaller than d(d− 1)/2 nd−1 for all n ≥ 1, which gives:

n|Un(h)− Vn(h)| ≤ d(d− 1)‖h‖∞.

We point out that this bound is essentially tight as (1/nd−1)(nd−n(n−1) . . . (n−d+1))
tends to d(d− 1)/2 as n goes to infinity.
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Using Proposition 6.3, and one can now bound the deviation probability.

P

{∣∣∣Vn(h)− θ(h)
∣∣∣ > t+

d(d− 1)‖h‖∞
n

}
≤ 2 exp

(
− nt2

2d‖h‖2∞

)
,

which concludes the proof.

Thus, despite the possible replications and the bias of Vn(h), it is still possible to control
its deviations around θ(h).

Further references about U -statistics include Hoeffding (1948) and Hoeffding (1963) for
his seminal works, Hajek (1968); Grams et al. (1973) for a study and use of projection
techniques, van der Vaart (1998) (Chapter 12 therein) for an excellent introduction,
de la Peña and Giné (1999) for the introduction of decoupling arguments, or Lee (1990)
as a general account of properties and asymptotic theory. Giné et al. (2000) provides
a more recent development on moment inequalities for U -statistics, while complements
about V -statistics may be found in Serfling (1980).

6.5 Conclusion

The next chapter deals with robust mean estimators relying on the Median-of-Means
(MoM) principle. Originally developed for standard means, this procedure is further
extended to U -statistics. But the use of U -statistics in Chapter 7 cannot be limited
to this adaptation. Indeed, as shall be seen in particular in Sections 7.2 and 7.4, the
analyses of randomized versions of MoM-like estimators crucially rely on U -statistics
and their remarkable concentration properties.
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As already mentioned, in the ERM paradigm, one substitutes the (intractable) problem

min
h measurable

EZ∼P
[
`(h, Z)

]
to min

h∈H

1

n

n∑
i=1

`(h, Zi),

implicitly assuming that the empirical mean is a good estimate of the expectation. While
this assumption seems sounded in presence of sub-Gaussian data, it is known to fail in
heavy tailed scenarios. A natural question that arises next is: do mean estimates that
overcome this difficulty exist? The answer is affirmative, and it is precisely the purpose
of this chapter to introduce and analyze several of such robust mean estimators.

Estimators presented here are based on the Median-of-Means principle (Nemirovsky
and Yudin, 1983), which is recalled in Section 7.1. Extensions based on randomizations
(Section 7.1), tailored to U -statistics (Section 7.3), or both at the same time (refer to
Section 7.4) are then detailed. They all come from the following publication:

I P. Laforgue, S. Clémençon, P. Bertail. On medians of (Randomized) pairwise
means. In Proceedings of International Conference on Machine Learning, 2019.
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Figure 7.1 – MoM’s procedure

7.1 The Median-of-Means Estimator

The first estimator we present is the Median-of-Means (MoM). It is the building block
for all estimators presented afterwards: in Section 7.2, we analyze a randomized version
of the MoM, while Sections 7.3 and 7.4 are dedicated to versions tailored to U -statistics,
respectively standard and randomized.

7.1.1 Definition

The Median-of-Means (MoM) estimator is a mean estimator introduced independently
in convex optimization by Nemirovsky and Yudin (1983), in computational complexity
theory by Jerrum et al. (1986), or for memory-efficient frequency moments estimation
by Alon et al. (1999). The construction of the MoM estimator starts by designing
independent weakly concentrated estimators of the mean, say by computing empirical
means on disjoint groups of observations. The second step consists in taking the median
of the previous estimators, leading to a robust estimate. Formally, recall that given a
collection of real numbers {Zi}i≤n ∈ Rn, its empirical mean is defined as

1

n

n∑
i=1

Zi,

while its median is

Zσ(n+1
2

) if n is odd, and Zσ(n
2

) otherwise,

with σ a permutation of {1, . . . , n} such that Zσ(1) ≤ . . . ≤ Zσ(n). The MoM estimator
is then defined as follows.

Definition 7.1. Let Sn = {Zi}i≤n be a sample of n independent realizations of a real-
valued random variable Z. Let K ≤ n, and partition Sn into K blocks (Bk)k≤K of
size B = bn/Kc (the possible K − 1 remaining observations may be ignored). For
k ≤ K, let θ̂k denote the empirical mean over Bk. Namely, θ̂k = 1

B

∑
i∈Bk Zi. The

Medians-of-Means (MoM) estimator is then given by

θ̂MoM = median(θ̂1, . . . , θ̂K).

One may find in Figure 7.1 a visual representation of the MoM’s building procedure. It
will notably be useful to draw comparisons with the randomized versions we introduce
in future sections (see Figures 7.2 to 7.6).

Despite this conceptual simplicity, the MoM estimator exhibits strong concentration
properties, even for heavy-tailed random variables. In particular, it compares very
favorably to the empirical mean, that requires much stronger assumptions to reach a
similar sub-Gaussian behavior.
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7.1.2 Concentration Properties

The MoM estimator has witnessed a particular resurgence of interest since the seminal
works by Audibert and Catoni (2011) and Catoni (2012). Indeed, the general idea of
these works is to analyze mean estimators through their deviation probabilities – rather
than via the mean squared error – giving the MoM a central role: leveraging the strong
concentration properties of the median, it achieves a sub-Gaussian behavior, even for of
heavy-tailed random variables, while the empirical mean typically necessitates bounded
or sub-Gaussian data. The counterpart to this efficiency is the careful choice of the
number of blocks, which plays a crucial role in the performance, and may depend on
the targeted confidence. The good concentration properties of the MoM are now to
be highlighted through their comparison to that of the empirical mean. We start by
recalling Hoeffding’s inequality, which ensures the empirical mean to be sub-Gaussian
if the observations are bounded.

Lemma 7.2. (Hoeffding’s Lemma, Hoeffding (1963)) Let Z be a centered real random
variable such that there exist a, b ∈ R2 such that a < Z < b. Then, for any λ > 0, the
following holds

E
[
eλZ
]
≤ e

λ2(b−a)2

8 .

Theorem 7.3. (Hoeffding’s Inequality, Hoeffding (1963)) Let {Zi}i≤n be n independent
realizations of a real random variable Z with expectation θ and such that there exist
a, b ∈ R2 such that a < Z < b. Then, for any δ > 0 it holds

P


∣∣∣∣∣∣ 1n

n∑
i=1

Zi − θ

∣∣∣∣∣∣ > (b− a)

√
ln(2/δ)

2n

 ≤ δ.
Proof.

P


n∑
i=1

(Zi − θ) > t

 = P
{
eλ
∑n
i=1(Zi−θ) > eλt

}
for any λ > 0,

≤ e−λt E

 n∏
i=1

eλ(Zi−θ)

 ,
≤ e−λt+

nλ2(b−a)2

8 ,

P


n∑
i=1

(Zi − θ) > t

 ≤ e− 2t2

n(b−a)2 ,

P


∣∣∣∣∣∣ 1n

n∑
i=1

Zi − θ

∣∣∣∣∣∣ > t

 ≤ 2e
− 2nt2

(b−a)2 ,

where we have used successively Markov’s inequality, the independence of the Zi’s,
Lemma 7.2, and optimizing the bound for λ > 0, attained in λ = 4t/(n(b − a)2) > 0.
Reverting the bound leads to the desired result.
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Remark 7.4. In its full generality, Hoeffding’s inequality does not need the observations
to be i.i.d., but only independent. It leads to a more general result involving the bounds
of each random variable Zi. However, this general version still requires the boundedness
of the random variables, which is precisely the point we want to emphasize.

We continue by relaxing the boundedness assumption, and consider now sub-Gaussian
random variables. Guarantees almost identical to that of Theorem 7.3 may be derived
very easily, as one only needs to apply the definition of sub-Gaussianity (Definition 7.5)
instead of Lemma 7.2.

Definition 7.5. A real random variable Z is said to be σ sub-Gaussian if it satisfies

∀λ > 0, E
[
eλ(Z−E[Z])

]
≤ eσ2λ2/2.

Remark 7.6. Notice that thanks to Lemma 7.2, every bounded real random variable Z
such that |Z| ≤M is also M sub-Gaussian.

Proposition 7.7. Let {Zi}i≤n be n independent realizations of a random variable Z
σ sub-Gaussian and with expectation θ. Then, for any δ > 0 it holds

P


∣∣∣∣∣∣ 1n

n∑
i=1

Zi − θ

∣∣∣∣∣∣ > σ

√
2 ln(2/δ)

n

 ≤ δ.
Proof. The proof is identical to that of Theorem 7.3, except that Definition 7.5 is used
instead of Lemma 7.2.

We have recalled these basic tools in order to highlight the high concentration capacities
of the MoM estimator, that, unlike the empirical mean, does not require bounded data
(such as in Theorem 7.3) or sub-Gaussian data (like for Proposition 7.7), but only a
finite second order moment to concentrate nicely around the expectation. This behavior
is explicited by the following proposition.

Proposition 7.8. Let {Zi}i≤n be n independent realizations of a real random variable
Z with expectation θ and finite variance σ2. Then, for any δ ∈ [e1−2n/9, 1[, choosing
K =

⌈
9
2 ln(1/δ)

⌉
, it holds

P

∣∣∣θ̂MoM − θ
∣∣∣ > 3

√
6σ

√
1 + ln(1/δ)

n

 ≤ δ.
Proof. Let t > 0, and Îk,t = 1{|θ̂k − θ| > t} for k ≤ K. Observe that the Îk,t are i.i.d.
Bernoulli variables with same parameter p̂t = P{|θ̂k− θ| > t} ≤ Var(θ̂k)/t2 ≤ σ2/(Bt2).
In addition, observe that

{∣∣∣θ̂MoM − θ
∣∣∣ > t

}
⊂


K∑
k=1

Îk,t ≥
K

2

 ,
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such that, applying Hoeffding’s inequality to the bounded Îk,t, one gets

P
{∣∣∣θ̂MoM − θ

∣∣∣ > t

}
≤ P

 1

K

K∑
k=1

Îk,t ≥
1

2

 ,

≤ P

 1

K

K∑
k=1

Îk,t − p̂t ≥
1

2
− σ2

Bt2

 ,

P
{∣∣∣θ̂MoM − θ

∣∣∣ > t

}
≤ exp

−2K

(
1

2
− σ2

Bt2

)2
 .

At this point, ignoring thatK and B should be integers, choosingK = ln(1/δ)

2( 1
2
−λ)2 , λ < 1/2,

makes the upper bound equal to δ, as long as σ2

Bt2
= λ. Reverting in t gives

t = σ

√
1

λB
= σ

√
K

λn
= σ

√
1

2λ(1
2 − λ)2

ln(1/δ)

n
.

Optimizing in λ leads to an optimal rate of 3
√

3σ

√
ln(1/δ)
n , attained in λ = 1/6, for

K = 9
2 ln(1/δ). Now, using K =

⌈
9
2 ln(1/δ)

⌉
preserves the inequality in δ, while taking

B =
⌊
n
K

⌋
≥ n

2K ≥ n

2
⌈

9
2

ln(1/δ)
⌉ ≥ n

9(1+ln(1/δ)) leads to the slightly modified final result:

P

∣∣∣θ̂MoM − θ
∣∣∣ > 3

√
6σ

√
1 + ln(1/δ)

n

 ≤ δ.

Remark 7.9. As previously evoked, the counterpart to such sub-Gaussian behavior is
the careful choice of K. It should be of the order ln(1/δ), inducing that the estimator
changes with the confidence targeted. The MoM is a so called δ-dependent estimator.
This remark has therefore a consequence on the range of confidences achievable, since
we need K =

⌈
9
2 ln(1/δ)

⌉
≤ n. This phenomenon is shared by all MoM-based estimators

presented in this manuscript.

Remark 7.10. Notice that the optimization in λ is restricted to the interval ]0, 1/2[, so
that the use of Hoeffding’s inequality in the first part of the proof is always permitted.

Remark 7.11. The proof uses Hoeffding’s inequality to bound the deviation of the
sum of the indicator random variables Îk,t, as in Hsu and Sabato (2016), but using the
Binomial law as in Devroye et al. (2016) would also have been possible. Changes only
occur on constants: the 3

√
6 derived here is smaller than the 2

√
2e of Devroye et al.

(2016), but larger than the 6 of Hsu and Sabato (2016). It comes at the price of a
number

⌈
9
2 ln(1/δ)

⌉
of blocks needed, to be compared to the

⌈
ln(1/δ)

⌉
of Devroye et al.

(2016). Hsu and Sabato (2016) are able to exhibit a lower constant only thanks to the
extra assumption that K ≤ n/4, which naturally has also an impact on the range of
achievable confidences δ.
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Remark 7.12. The first inequality used {|θ̂MoM − θ| > t} ⊂ {∑k Îk,t ≥ K
2 } may seem

a bit rough. However, improving on this inclusion does not lead to significant gains in
the final bound. One may use instead

{∣∣∣θ̂MoM − θ
∣∣∣ > t

}
=


K∑
k=1

1{θ̂k − θ > t} ≥ K

2

 ∪


K∑
k=1

1{θ̂k − θ < −t} ≥
K

2

 .

After applying the union bound, one can only hope to improve on the constant factor
of Proposition 7.8, at the price of an extra assumption ensuring the deviations to be
symmetrical for instance. Thus, it is not of great interest to try refining this step.

One may possibly argue that Proposition 7.8 only addresses real random variables,
whereas concentration properties for the mean easily extend to the multivariate case.
However, the MoM has also been extended to the multidimensional setting, while
preserving the nature of the guarantees that can be derived.

7.1.3 Extension to Multidimensional Random Variables

Generalizing the concept of median to the multidimensional setting does not admit a
single answer, nor does the extension of the MoM. For instance, Hsu and Sabato (2016)
and Joly et al. (2017); Lugosi and Mendelson (2017) introduce alternatives to the scalar
median, either based on growing balls intersection or pairwise distance comparisons, to
extend the MoM to any metric space. Another natural approach is that of Minsker
et al. (2015), that uses the geometric median in Banach spaces. We now detail some of
their results, starting by recalling the definition of the geometric median.

Definition 7.13. Let Z be a Banach space with norm ‖ · ‖, and let µ be a probability
measure on (Z, ‖ · ‖). The geometric median of µ is given by

zmed = argmin
y∈Z

∫
Z

(
‖y − z‖ − ‖z‖

)
dµ(z).

Henceforth, the geometric MoM will refer to the multivariate mean estimator that is
built exactly as the standard MoM, except that a geometric median is used instead of
the standard scalar one. The rest of the notation remains unchanged.

Using geometrical arguments (see Lemma 2.1 in Minsker et al. (2015)), it can be shown
that the deviations of the geometric MoM can be controlled by the study of the indicator
variables that correspond to the individual deviations, just as in the scalar case. This
dependence is explicited in the following proposition.

Proposition 7.14. (Theorem 3.1 in Minsker et al. (2015)) For 0 < p < α < 1/2,
define Cα = (1− α)

√
1

1−2α , and ψ(α, p) = (1− α) ln 1−α
1−p + α ln α

p . Let t > 0 such that
for all k ≤ K it holds

P
{
‖θ̂k − θ‖ > t

}
≤ p.

Then one has
P
{
‖θ̂MoM − θ‖ > Cαt

}
≤ e−Kψ(α,p).
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Proof. Using successively Lemma 2.1 in Minsker et al. (2015), the introduction of a
binomial random variable W ∼ B(K, p) and Chernoff bound, one gets

P
{
‖θ̂MoM − θ‖ > Cαt

}
≤ P


K∑
k=1

1{‖θ̂k − θ‖ > t} > αK

 ≤ P
{
W > αK

}
≤ e−Kψ(α,p).

This result directly leads to a concentration inequality for the geometric MoM.

Corollary 7.15. (Corollary 4.1 in Minsker et al. (2015)) Let Z be a separable Hilbert
space with norm ‖ · ‖. Let {Zi}i≤n be n independent realizations of a Z-valued random
variable Z with expectation θ and covariance operator Σ = E[(Z− θ)⊗ (Z− θ)] of finite
trace. Set α∗ = 7/18, and p∗ = 0.1. Then, for any δ ∈]0, 1[ such that K =

⌊
ln(1/δ)
ψ(α∗,p∗)

⌋
+1

is lower than n/2, it holds

P

∥∥∥θ̂MoM − θ
∥∥∥ > 11

√
Tr(Σ) ln(1.4/δ)

n

 ≤ δ.
As for computational aspects, we underline that many recent contributions focus on
downscaling the computational cost of MoMs in high dimension. Among them, Hopkins
(2018), for instance, proposes an algorithmic approach to compute multivariate MoMs
in polynomial time.

So far, all results about the MoM estimator, whether scalar or multivariate, are based
on the assumption that the weakly concentrated estimates on which is applied the
median are independent. It is the purpose of the following section to investigate a
relaxed randomized version of the MoM that does not rely anymore on this independence
assumption, while preserving strong guarantees. From now on, all estimates described
are taken from Laforgue et al. (2019b).

7.2 The Median-of-Randomized-Means Estimator

Randomization is a classical alternative to data segmentation in many situations. For
instance, it can be used for model selection as a substitute to cross-validation, or to
compute estimator stability via bootstrap aggregation. In this subsection, we explore
randomization, instead of the initial segmentation, for the MoM estimator, leading to
the novel Median-of-Randomized-Means (MoRM) estimator.

7.2.1 Definition and Motivations

Intuitively, the estimator is built exactly the same way as the MoM, except that the
blocks on which the intermediate empirical means are computed are no longer a partition
of the original dataset, but rather randomly sampled. For each block, a subset of
constant size B (to be explicited afterwards) is sampled, without replacement so that
one observation cannot be present twice in a block. This Sampling Without Replacement
will be referred to as SWoR thereafter. As for the different blocks, they are sampled
independently and with replacement, so that one observation may pertain to different
blocks, jeopardizing the independence assumption. Formally, each random block Bk
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Z1
. . . ZB ZB+1 . . . Zn−1 Zn

mean mean

θ̄1 . . . θ̄K

θ̄MoRM

median

Figure 7.2 – MoRM’s procedure

is fully characterized by a random vector εk = (εk,1, . . . , εk,n) ∈ {0, 1}n such that εk,i
is equal to 1 if observation i is selected in Bk, and to 0 otherwise. The εk’s are i.i.d.
random vectors, uniformly distributed on the set Λn,B =

{
ε ∈ {0, 1}n : 1>ε = B

}
, of

cardinality
(
n
B

)
.

We now give a formal definition of the randomized version of the new mean estimate.

Definition 7.16. Let Sn = {Zi}i≤n be a sample of n independent realizations of a
real-valued random variable Z. Let K ∈ N∗, B ≤ n, and (Bk)k≤K be K blocks of size
B, sampled independently from Sn by SWoR. For k ≤ K, let θ̄k denote the empirical
mean over Bk. Namely, θ̄k = 1

B

∑
i∈Bk Zi = 1

B

∑n
i=1 εk,iZi, with the εk’s drawn i.i.d.

and uniformly over Λn,B. The Median-of-Randomized-Means (MoRM) estimator is then
given by

θ̄MoRM = median(θ̄1, . . . , θ̄K).

The estimator’s construction is also depicted in Figure 7.2, which should be considered
together with Figure 7.1 in order to perceive the similarities and differences with the
standard MoM estimator.

Although clearer after examination of further sections, some motivations for such a
randomization may nevertheless be exposed as of now.

• First of all, the MoRM procedure induces a very flexible framework, in which the
number of blocks K may not be limited by n, nor observations set aside because
n is not divided by K.

• Empirically, when performing a MoM Gradient Descent (MoM GD, Section 8.4),
it is often needed to shuffle the blocks at each step in order to avoid local minima
(see e.g. Remark 5 in Lecué et al. (2018)). While this shuffling may seem artificial
and “ad hoc” within a standard MoM GD, it is already included and controlled in
a MoRM GD.

• Finally, with in mind the extension of the Median-of-U -Statistics (Section 7.3)
to the Median-of-Incomplete-U -Statistics (see Section 7.4.3), which should be of
particular interest thanks to the reduced variance property, it is first needed to
exhibit guarantees on the randomization of the simple MoM.

As previously underlined, the counterpart to the proposed randomization is that the
small intermediate estimators θ̄k’s are no longer independent. Despite this relaxation,
concentration inequalities for the MoRM estimator can be derived, as revealed by the
following subsection.
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7.2.2 Concentration Properties

Without independence of the θ̄k’s, on which Proposition 7.8’s proof crucially relies, it is
naturally more involved to derive a concentration inequality for the MoRM. However,
one can leverage the independence of the randomized blocks conditionally to the data,
as well as the specificity of the SWoR to derive guarantees similar to that of the MoM.

Proposition 7.17. Let Sn = {Zi}i≤n be a sample of n independent realizations of a real
random variable Z with expectation θ and finite variance σ2. Then, for any τ ∈]0, 1/2[,

for any δ ∈ [2e−4τ2n/9, 1[, choosing K =

⌈
ln(2/δ)

2( 1
2
−τ)2

⌉
and B =

⌊
8τ2n

9 ln(2/δ)

⌋
, it holds

P

∣∣∣θ̄MoRM − θ
∣∣∣ > 3

√
3 σ

2 τ3/2

√
ln(2/δ)

n

 ≤ δ.
Proof. Let t > 0, and Īεk,t = 1{|θ̄k− θ| > t} for k ≤ K. Notice that the Īεk,t’s have two
sources of randomness: one from the data Sn, and one from the randomness of the block,
materialized by εk. Just like in the classic argument used to prove Proposition 7.8, it
holds {∣∣∣θ̄MoRM − θ

∣∣∣ > t

}
⊂


K∑
k=1

Īεk,t ≥
K

2

 .

In order to benefit from the conditional independence of the blocks given the original
sample Sn, we may condition upon Sn and consider the variability induced by the εk’s
only. Then, the global deviation of the average 1

K

∑K
k=1 Īεk,t may be decomposed into

1) its deviation, solely due to the εk’s, from its conditional expectation

Ūn,t = Eε

 1

K

K∑
k=1

Īεk,t

∣∣∣ Sn
 ,

2) the deviation of this conditional expectation Ūn,t from the overall expectation

p̄t = E[Ūn,t] = ESn
[
E[Ī1,t | Sn]

]
= E[Ī1,t] = P

{
|θ̄1 − θ| > t

}
.

We have ∀τ ∈]0, 1/2[:

P
{∣∣∣θ̄MoRM − θ

∣∣∣ > t

}
≤ P

 1

K

K∑
k=1

Īεk,t ≥
1

2

 ,

≤ P

 1

K

K∑
k=1

Īεk,t − Ūn,t + Ūn,t − p̄t ≥
1

2
− p̄t + τ − τ

 ,

≤ P

 1

K

K∑
k=1

Īεk,t − Ūn,t ≥
1

2
− τ

+ P
{
Ūn,t − p̄t ≥ τ − p̄t

}
.
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As announced, we deal with the first term of last inequation’s right side by conditioning
upon Sn, and using Hoeffding’s inequality for i.i.d. averages:

P

 1

K

K∑
k=1

Īεk,t − Ūn,t ≥
1

2
− τ

 ≤ ESn

Pε
 1

K

K∑
k=1

Īk,t − Ūn,t ≥
1

2
− τ

∣∣∣∣ Sn

,

≤ ESn

exp

−2K

(
1

2
− τ
)2

 ,

≤ exp

−2K exp

(
1

2
− τ
)2
 .

As for the second term, one may observe that

Ūn,t =
1(
n
B

) ∑
ε∈Λ(n,B)

Īε,t =
1(
n
B

) ∑
I

1

{∣∣∣∣ 1

B

B∑
j=1

XIj − θ
∣∣∣∣ > t

}
,

where the symbol
∑

I refers to the summation over all unordered subsets I of B integers
chosen in {1, . . . , n}. Ūn,t is therefore a U -statistic of degree B (see Definition 6.1),
with symmetric kernel h(Z1, . . . , ZB) = 1{|(1/B)

∑B
j=1Xj − θ| > t}. This second

term being independent from the εk’s, we can use Hoeffding’s inequality for U -statistics
(Proposition 6.3), together with the fact that p̄t ≤ σ2

Bt2
(cf Appendix B.1). It yields

PSn
{
Ūn,t − p̄t ≥ τ − p̄t

}
≤ PSn

{
Ūn,t − p̄t ≥ τ −

σ2

Bt2

}
,

≤ exp

−2
n

B

(
τ − σ2

Bt2

)2
 .

Finally, we get

P
{∣∣∣θ̄MoRM − θ

∣∣∣ > t

}
≤ exp

−2K

(
1

2
− τ
)2
+ exp

−2
n

B

(
τ − σ2

Bt2

)2
 .

Choosing K =

⌈
ln(2/δ)

2( 1
2
−τ)2

⌉
ensures that the first term is lower than δ/2. Ignoring that

B should be an integer, choosing B = 2n(τ−λ)2

ln(2/δ) , λ < τ , makes the second term equal to

δ/2 as long as σ2

Bt2
= λ. Reverting in t gives

t = σ

√
1

λB
= σ

√
1

2λ(τ − λ)2

ln(2/δ)

n
.

Optimizing in λ leads to an optimal rate of 3
√

3
2
√

2τ3/2σ

√
ln(2/δ)
n , attained in λ = τ/3, for

B = 8τ2n
9 ln(2/δ) . Now, using B =

⌊
8τ2n

9 ln(2/δ)

⌋
≥ 4τ2n

9 ln(2/δ) preserves the inequality in δ/2,

while scaling t by
√

2, leading to the final result.
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At this point, a few remarks can be made in order to compare Propositions 7.8 and 7.17.

Remark 7.18. First, notice that the number K of randomized blocks is completely
arbitrary in the MoRM procedure and may even exceed n. Consequently, it is always

possible to build the
⌈

ln(2/δ)

2( 1
2
−τ)2

⌉
blocks prescribed, and there is no restriction on the

acceptable range of confidences δ achievable due to K.

Remark 7.19. Then, the size B of the blocks can be chosen completely independently
from K, inducing a slight improvement with ln(2/δ) instead of 1 + ln(1/δ) at the
numerator. Notice that, as in Proposition 7.8, the optimization in λ is restricted to
the interval ]0, τ [, so that the use of Hoeffding’s inequality in the first part of the proof
is always permitted. Observe also that B never exceeds n. Indeed for all τ ∈]0, 1/2[,

8τ2

9 ln(2/δ) does not exceeds 1 as long as δ is lower than 2 exp(−2/9) ≈ 1.6, which is always
true. Still, B needs to be greater than 1, which results in a restriction on the acceptable
range of confidences δ achievable, such as specified.

Remark 7.20. Third, the proposed bound involves an additional parameter τ , that can
be arbitrarily chosen in ]0, 1/2[. As may be revealed by examination of the proof, the
choice of this extra parameter reflects a trade-off between the deviations induced by ε or
by Sn, that depends on K and B respectively. The larger τ , the larger K, the larger
the confidence range, the larger B and the lower the constant factor. Since one can
pick K arbitrarily large, and that B never exceeds n, τ should be chosen as large as
possible in ]0, 1/2[. This way, one asymptotically achieves the 3

√
6 constant factor of

Proposition 7.8. However, the price of such an improvement is the construction of a
higher number of blocks in practice. This seems sounded, as one needs more randomized
ornithorynque blocks to see all observations, what a partition does by design. For a
comparable number of blocks (τ = 1/6), the constant in Proposition 7.17 becomes 27

√
2.

Remark 7.21. Finally, about the term ln(2/δ) that appears, instead of ln(1/δ). It only
comes out from a crude analysis during the proof. Indeed, K and B have been chosen so
that both exponential terms are equal to δ/2, but one could of course consider splitting
the two terms into (1− κ)δ and κδ for any κ ∈]0, 1[. This, way, choosing

K =


ln

(
1

(1−κ)δ

)
2(1

2 − τ)2

 and B =

 8τ2n

9 ln
(

1
κδ

)


leads to a ln(1/κδ) term instead. With the possibility to choose κ as close as possible to
1, one asymptotically recovers the ln(1/δ) rate of Proposition 7.8.

Just as for MoM, let us now consider extensions of the framework we just developed.
If the extension to multivariate random variables is quite easy, the use of the SWoR
sampling seems to be crucial, and it cannot be replaced by any other sampling scheme.

7.2.3 Alternatives and Extensions

Guarantees being proven for the SWoR sampling, it is natural to wonder if other
sampling schemes could lead to similar bounds. We discuss this alternative in the
following subsection, as well as the possibility to apply MoRM to multivariate data.
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Alternative Sampling Schemes

One possible alternative that naturally comes to mind is to use a Monte-Carlo sampling,
which allows replacement within a block. However, the theoretical analysis of such a
variant is much more challenging, as the conditional expectation takes the form of a
V -statistic, instead of a U -statistic.

Let θ̃k denote the empirical means obtained on the K Monte-Carlo samples of size B,
Ĩk,t, Ũn,t and p̃t the counterparts of respectively Īk,t, Ūn,t and p̄t introduced in the proof
of Proposition 7.17. If Pε{ 1

K

∑K
k=1 Ĩk,t − Ũn,t > 1

2 − τ | Sn} can still be bounded using
the conditional version of Hoeffding’s inequality, PSn{Ũn,t − p̃t > τ − p̃t} cannot be
treated the same way as in Proposition 7.17, since Ũn,t is not anymore a U -statistic of
degree B. More precisely,

Ũn,t =
1

nB

n∑
i1=1

. . .

n∑
iB=1

1

{∣∣∣∣ 1

B

B∑
j=1

Zij − θ
∣∣∣∣ > t

}

is a V -statistic of degree B (see Section 6.4.2), with same kernel as Ūn,t. Proposition 6.5
actually encourages to study the deviation of Ũn,t with respect to p̄t (the expected value
of the associated U -statistic Ūn,t). But one can only achieve

PSn
{
Ũn,t − p̄t > τ − p̄t

}
≤ exp

− n

2B

(
τ − σ2

Bt2

)2
+

B(B − 1)

n
,

which is clearly not sufficient due to the second term.

The use of the bounded differences inequality (McDiarmid (1989), Appendix A) is not
satisfactory neither. Indeed, considering Ũn,t as a function of the n i.i.d. variables
{Zi}i≤n, one has to bound |Ũn,t − Ũ ′n,t|, where Ũ ′n,t is the same quantity as Ũn,t, but
obtained on a sample S ′n in which only one observation differs from Sn. Formally∣∣∣Ũn,t − Ũ ′n,t∣∣∣ =

∣∣∣∣P{|θ̃1 − θ| > t | Sn
}
− P

{
|θ̃′1 − θ| > t | S ′n

}∣∣∣∣ .
If the observation that differs between Sn and S ′n is not drawn in the Monte-Carlo

block, which happens with probability
(

1− 1
n

)B
, the difference is null. Otherwise, it

is strictly lower than 1. Finally, we get

∣∣∣Ũn,t − Ũ ′n,t∣∣∣ ≤ 1−
(

1− 1

n

)B
≤ B

n
,

and the bounded difference inequality yields

PSn
{
Ũn,t − p̃t > τ − p̃t

}
≤ exp

(
−2

n

B2

(
τ − p̃t

)2)
.

However, the B2 at the denominator, instead of B in the proof of Proposition 7.17
makes the bound unusable, not even considering that the Chebyshev upper-bound for
p̃t is larger than that of p̄t (the variance is naturally larger due to the allowance of
possible replications within a block in the Monte-Carlo scheme).
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The same phenomenon occurs for a Bernoulli sampling, in which each observation has
a probability B/n to be drawn in a block, independently from the others, potentially
leading to blocks of different sizes. |Ũn,t − Ũ ′n,t| is still bounded by the probability of
the differing observation to be in the block, which is directly B/n here.

Hence, although these variants have been shown experimentally to provide reasonable
results (see Section 7.5), their theoretical analyses cannot be tackled using the same
arguments as the ones employed for Proposition 7.17, and the SWoR seems to be the
only sampling scheme that comes along with easily provable guarantees.

Extension to Multidimensional Random Variables

Another way to extend the MoRM estimator is to consider multidimensional random
variables. Among approaches extending MoMs to random vectors (see Section 7.1.3),
that of Minsker et al. (2015) could be readily adapted to MoRM. Indeed, once Lemma
2.1 therein has been applied, the estimator’s deviation probability is bounded by the
deviation probability of a sum of indicator random variables (proof of Proposition 7.14).
This lemma being a consequence of the nature of the geometric median only, a geometric
MoRM would also benefit from it. The rest of the proof can be handled exactly as for
Proposition 7.17, leading to guarantees for the geometric MoRM.

Now that we have proved that guarantees may still be derived without independence
between blocks, we can address problems where this question is all the more present.
Namely, the estimation of U -statistics. Indeed, a U -statistic may depend on several
variables, making the segmentation particularly harmful: once the partition is set, an
observation cannot be used on another block, at any of the kernel entry, multiplying
the partitioning damage by roughly the degree of the U -statistic.

7.3 The Median-of-U-Statistics Estimator

As shall be seen in this section, the MoM procedure extends nicely and very naturally
to the problem of estimating U -statistics. Like for standard means, it yields estimators
that do not require the kernel to be bounded (see Proposition 6.3) to exhibit strong
concentration properties. Notice that for the sake of simplicity, we first restrict ourselves
to U -statistics of degree 2, general statements for U -statistics of arbitrary degree being
deferred to Section 7.3.3.

7.3.1 Definition

Rather than the mean of an integrable random variable, we assume now that the
quantity of interest is of the form θ(h) = E[h(Z1, Z2)], where Z1 and Z2 are i.i.d.
random vectors with distribution F (dz), and h : Z×Z → R is a symmetric measurable
mapping, square integrable with respect to F ⊗ F . A direct adjustment of the MoM
estimator consists in replacing the standard empirical means by pairwise means, i.e.
U -statistics of degree 2, as detailed in Definition 7.22 and Figure 7.3.

Definition 7.22. Let Sn = {Zi}i≤n be a sample of n independent realizations of a Z-
valued random variable Z, and h as described in the previous paragraph. Let K ≤ n, and
partition Sn into K blocks (Bk)k≤K of size B = bn/Kc (the possible K − 1 remaining
observations may be ignored). For k ≤ K, let Ûk(h) denote the (complete) U -statistic
built on Bk. Namely, Ûk(h) = 2

B(B−1)

∑
i,j∈B2

k
i<j

h(Zi, Zj). The Median-of-U -Statistics
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Figure 7.3 – MoU’s procedure

(MoU) estimator is then given by

θ̂MoU(h) = median(Û1(h), . . . , ÛK(h)).

This estimator resembles a lot the standard MoM, and comparable guarantees may be
established using the same proof techniques, as shall be detailed in the next subsection.

7.3.2 Concentration Properties

Just as for the standard MoM, strong concentration guarantees can be derived for
the MoU estimator, under minimal assumptions (finite second order moment). When
analyzing U -statistics, almost all quantities depend on the kernel h chosen. In order to
avoid heavy notation, the dependence in h may be ignored in the subsequent analyses
when it is clear from context.

Proposition 7.23. Let {Zi}i≤n be n independent realizations of a Z-valued random
variable Z, and h : Z × Z → R symmetric such that E[h(Z1, Z2)] = θ(h) < +∞, and
Var(h(Z1, Z2)) = σ2(h) < +∞. Then, for any δ ∈ [e1−2n/27, 1[, with K =

⌈
9
2 ln(1/δ)

⌉
,

it holds

P

∣∣∣θ̂MoU(h)− θ(h)
∣∣∣ > C1(h)

√
1 + ln(1/δ)

n
+ C2(h)

1 + ln(1/δ)

n

 ≤ δ,
with C1(h) = 6

√
6 σ1(h) and C2(h) = 18

√
3 σ2(h), σ1(h) and σ2(h) being defined as in

Equations (6.4) and (6.5) respectively.

Proof. The proof technique is very similar to that of previous propositions. For the K
blocks, let Ĵk,t = 1{|Ûk(h)− θ(h)| > t}. Again, observe that P

{∣∣∣θ̂MoU(h)− θ(h)
∣∣∣ > t

}
is lower than

P

 1

K

K∑
k=1

Ĵk,t − q̂t ≥
1

2
− q̂t

 ,
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where q̂t = E[Ĵ1,t] = P{|Û1(h) − θ(h)| > t}. By virtue of Chebyshev’s inequality and
Equation (6.7), one has

q̂t ≤
Var

(
Û1(h)

)
t2

=
1

t2

(
4σ2

1(h)

B
+

2σ2
2(h)

B(B − 1)

)
. (7.1)

Using Hoeffding’s inequality, the deviation probability can thus be bounded by

exp

−2K

1

2
− 1

t2

(
4σ2

1(h)

B
+

2σ2
2(h)

B(B − 1)

)2
 .

At this point, ignoring thatK and B should be integers, choosingK = ln(1/δ)

2( 1
2
−λ)2 , λ < 1/2,

makes the upper bound equal to δ, as long as 1
t2

(
4σ2

1(h)
B +

2σ2
2(h)

B(B−1)

)
= λ. Reverting in

t gives

t =

√√√√ 1

λ

(
4σ2

1(h)

B
+

2σ2
2(h)

B(B − 1)

)
≤ 2σ1(h)

√
1

λB
+
√

2σ2(h)

√
1

λB(B − 1)
.

The first term is obviously the dominant one, and is similar to that of Proposition 7.8.
The optimization in λ is the same, and one should pick λ = 1/6, and K = 9

2 ln(1/δ).

Using K =
⌈

9
2 ln(1/δ)

⌉
preserves the inequality in δ. Taking B =

⌊
n
K

⌋
, together with

the fact that B ≥ B − 1 ≥
⌊
n
K

⌋
− 1 ≥ n

2K ≥ n

2
⌈

9
2

ln(1/δ)
⌉ ≥ n

9(1+ln(1/δ)) when K ≤ n/3

(see Appendix C), one gets

t ≤ 6
√

6σ1(h)

√
1 + ln(1/δ)

n
+ 18
√

3σ2(h)
1 + ln(1/δ)

n
,

that allows to complete the proof.

Remark 7.24. This bound for U -statistics involves two terms. The first one, which is
dominant, is almost the same as that of MoM in Proposition 7.8. The 2 factor difference
derives from the difference in variances: 4σ2

1(h) instead of σ2. The second term also
comes from the variance expression of the U -statistic, which features an additional part
in 1/B2 approximately. It is thus roughly the square of the first term.

Remark 7.25. In Proposition 7.23, we have sacrificed a bit generality for the sake
of simplicity. Indeed, approximations on the upper bound for t can only be made if
K ≤ n/3. It has a direct consequence on the range of attainable confidences δ, which
differs from that of Propositions 7.8 and 7.17. Finally, notice that, as in previous
propositions, a particular care has been given to the fact that Hoeffding’s inequality is
always used on positive deviations.

The rest of the section is devoted to the analysis of several alternatives and extensions
to the MoU estimator. It especially includes a generalization of Proposition 7.23 to
U -statistics of arbitrary degree, and a discussion about related works.
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Figure 7.4 – MoM on Half procedure.

7.3.3 Alternatives and Extensions

In this subsection, we explore several alternatives and extensions to the MoU estimator:
one based on a direct application of MoM to the pairs, one extension for U -statistics
of arbitrary degree, and one estimator proposed in Joly and Lugosi (2016) that uses
distinct disjoint blocks for each coordinate in h.

The MoM on Half Alternative

Building independent blocks by partitioning naturally induces independent U -statistics.
Nevertheless, one can perfectly imagine directly selecting independent pairs and building
U -statistics based on them. Observe however that creating the biggest possible blocks of
independent pairs (between blocks) boils down to partitioning the data and creating all
pairs within independent blocks, exactly as in Definition 7.22. The opposite strategy is
to create pairs all independent from each other and then apply directly MoM’s procedure
to the bn/2c new independent observations created. Such a procedure is exposed in
Figure 7.4.

Applying Proposition 7.8 to the bn/2c independent observations
{
h(Zi, Zi+1)

}
i≤bn/2c

,

one gets that for any δ ∈ [e1−2bn/2c/9, 1[, it holds

P

∣∣∣θ̂MoM1/2
(h)− θ(h)

∣∣∣ > 3
√

6σ(h)

√
1 + ln(1/δ)

bn/2c

 ≤ δ.
If compared to Proposition 7.23, this bound involves approximately a 6

√
6σ(h) constant,

instead of 6
√

6σ1(h) for the corresponding dominant term. Recalling that σ2(h) =
2σ2

1(h) + σ2
2(h) (Equation (6.6)), this strategy misses a

√
2 factor, in addition to σ2(h).

For this latter term, the MoM on Half procedure exhibits a rate which is the square
root of that of θ̂MoU(h). This difference is due to the variances of the independent
estimates used in both methods. MoU uses all pairs within a partition block, leading
to a variance of the order σ2

1(h)/B + σ2
2(h)/B2 for the base estimates, while the MoM

on Half only uses the predefined pairs, set once and for all, inducing a higher σ2(h)/B
variance. The MoM on Half procedure is however less computationally demanding, as
much fewer pairs are involved, and its theoretical weakness is less predominant as σ2(h)
decreases.
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MoU for U-Statistics of Arbitrary Degree

Adapting the proof of Proposition 7.23 to U -statistics of arbitrary degree only requires
to reconsider the variance expression. Instead of using the formula of Equation (6.7),
plugging Equation (6.3)’s upper bound is enough to get a counterpart to Equation (7.1):

q̂t ≤
Var

(
Û1(h)

)
t2

≤ 1

t2

 d∑
c=1

d!2ζc(h)

c!(d− c)!2
1

B(B − 1) . . . (B − c+ 1)

 .

It yields

t =

√√√√ 1

λ

d∑
c=1

d!2ζc(h)

c!(d− c)!2
1

B(B − 1) . . . (B − c+ 1)
,

whose dominant term is obviously that attained by c = 1, and is similar to that in
the proof of Proposition 7.23. The optimization in λ thus does not change (one should
choose λ = 1/6 and K = 9/2 ln(1/δ)). Using Appendix C, that ensures B − d + 1 =⌊
n
K

⌋
− d+ 1 ≥ n

2K as long as K ≤ n
2d−1 , and breaking the square root into pieces, one

finally gets

t ≤
d∑
c=1

d!

(d− c)!

√
6ζc(h)

c!

(
2K

n

)c/2
,

≤
d∑
c=1

3cd!

(d− c)!

√
6ζc(h)

c!

(
1 + ln(1/δ)

n

)c/2
.

Proposition 7.26. Let d ∈ N∗, {Zi}i≤n be n ≥ d independent realizations of a Z-
valued random variable Z, and h : Zd → R symmetric such that E[h(Z1, . . . , Zd)] =

θ(h) < +∞, and Var(h(Z1, . . . , Zd)) = σ2(h) < +∞. Then, for any δ ∈ [e
1− 2n

9(2d−1) , 1[,
choosing K =

⌈
9
2 ln(1/δ)

⌉
, it holds

P


∣∣∣θ̂MoU(h)− θ(h)

∣∣∣ > d∑
c=1

C (c, d, h)

(
1 + ln(1/δ)

n

)c/2 ≤ δ,
with C (c, d, h) = 3cd!

(d−c)!

√
6ζc(h)
c! for c ≤ d, and ζc(h) defined as in Equation (6.1).

Remark 7.27. Notice that constants of Proposition 7.23 may not be recovered, since
different variance expressions have been used: one with the σc(h), one with the ζc(h).
The rates are however of the same order, and the range of admissible confidences δ
remains unchanged.

Remark 7.28. As already noticed in Section 6.3, using Equation (6.8), should allow
to derive guarantees for multisample U -statistics, up to a careful management of the
different sample sizes.

Related Works

Among studies on robust estimation of U -statistics, mention has to be made of the
work by Minsker and Wei (2018). The angle taken by authors is however completely
different from that proposed in this section. The U -statistic is viewed as aM -estimator,
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minimizing a criterion involving the quadratic loss. The proposed estimator is then the
M -estimator solving the same criterion, except that a different loss function is used.
This loss function is designed to induce robustness, while being close enough to the
square loss to derive guarantees.

The work by Joly and Lugosi (2016) is much closer to the estimator of Definition 7.22.
Authors also build upon the MoM methodology, and starts by partitioning the dataset
into K disjoint blocks of roughly equal size. But rather than computing (complete)
U -statistics on each block, authors advocate to proceed as follows: 1) select a collection
of d blocks, where d is the degree of the U -statistic, 2) compute the average of all
the h(Zi1 , . . . , Zid), where ij is allowed to vary in block j, 3) get such an estimate for
every (unordered) collection of d blocks among the K original ones, and 4) finally take
the median. The possibility of considering only the “diagonal blocks” (i.e. that every ij
varies in the same block) is also evoked – but not investigated – and corresponds exactly
to Definition 7.22. Joly and Lugosi (2016) also establish sharper bounds for degenerate
U -statistics, that could be adapted to our setting based on a sharper variance control.

One advantage of MoU is its lower computational cost: only K
(n/K

d

)
terms are summed,

compared to the
(
K
d

)
(n/K)d of Joly and Lugosi (2016). Furthermore, it is easier to

analyze theoretically, thanks to the independence of the complete block U -statistics.
On the contrary, two base estimators of Joly and Lugosi (2016) are dependent as soon
as they share one block among their respective collections of d blocks. However, authors
did not consider MoU due to the “waste” it induces. Indeed, when computing complete
U -statistics on blocks, one observation is only paired to a smaller fraction of other
observations (namely, those in the same block). It yields redundancy, and consequently
a higher variance, exactly as for complete U -statistics compared to incomplete ones (see
Section 6.4.1 and Figure 6.1 therein).

Another remedy to this redundancy is to merge the MoRM and the MoU procedures
to build the Median-of-Randomized-U -Statistics. Considering complete U -statistics on
randomized blocks, or even incomplete U -statistics, then allows every observation to be
paired to any other one. It is precisely the purpose of the subsequent section to study
at length this approach.

7.4 The Median-of-Randomized-U-Statistics Estimator

A first and natural way to extend the randomized framework of MoM to U -statistics is
surely to draw random SWoR blocks as in MoRM, compute the complete U -statistics on
these blocks and take the median. As for MoRM, an observation may appear in several
blocks, hence the need for a more complex proof, relying on conditioning upon the
data. Nevertheless, and similarly to MoM/MoRM, guarantees derived in the randomized
setting are of same nature as that in the partition case, and one can even recover constant
factors asymptotically.

7.4.1 Definition

We start by defining formally the new estimator introduced, through Definition 7.29
and Figure 7.5. We keep the notation introduced in Section 7.2, namely the randomized
blocks (Bk)k≤K are characterized by the random vectors εk, uniformly distributed over
Λn,B = {ε ∈ {0, 1}n : 1>ε = B}.
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Figure 7.5 – MoRU’s procedure

Definition 7.29. Let Sn = {Zi}i≤n be a sample of n independent realizations of a
Z-valued random variable Z, and h as in Definition 7.22. Let K ∈ N∗, B ≤ n and
(Bk)k≤K be K blocks of size B, sampled independently from Sn by SWoR. For k ≤ K,
let Ūk(h) denote the (complete) U -statistic built on the block Bk. Namely, Ūk(h) =

2
B(B−1)

∑
i,j∈B2

k
i<j

h(Zi, Zj) = 2
B(B−1)

∑
i<j εk,iεk,jh(Zi, Zj). The Median-of-Randomized-

U -Statistics (MoRU) estimator is then given by

θ̄MoRU(h) = median(Ū1(h), . . . , ŪK(h)).

Let us now investigate the concentration properties of this new estimate.

7.4.2 Concentration Properties

Despite this randomization, the concentration properties of the MoRU are not affected.
Using the same conditioning trick as for the proof of MoRM is sufficient. One even
recovers the constant factors of MoU asymptotically.

Proposition 7.30. Let {Zi}i≤n be n independent realizations of a Z-valued random
variable Z, and h : Z × Z → R symmetric such that E[h(Z1, Z2)] = θ(h) < +∞, and
Var(h(Z1, Z2)) < +∞. Then, for any τ ∈]0, 1/2[, for any δ ∈ [2e−2τ2n/9, 1[, choosing

K =

⌈
ln(2/δ)

2( 1
2
−τ)2

⌉
and B =

⌊
8τ2n

9 ln(2/δ)

⌋
, it holds

P

∣∣∣θ̄MoRU(h)− θ(h)
∣∣∣ > C1(h, τ)

√
ln(2/δ)

n
+ C2(h, τ)

ln(2/δ)

n

 ≤ δ,
with C1(h, τ) = (τ/3)−

3
2 σ1(h), and C2(h, τ) = 2(2τ/3)−

5
2 σ2(h), σ1(h) and σ2(h) being

defined as in Equations (6.4) and (6.5) respectively.
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Proof. Analogously to Proposition 7.17’s proof, define

J̄εk,t = 1{|Ūk(h)− θ(h)| > t} ∀k ≤ K,

W̄n,t = Eε

 1

K

K∑
k=1

J̄εk,t

∣∣∣ Sn
 ,

q̄t = E[W̄n,t] = E[J̄ε1,t] = P{|Ū1(h)− θ(h)| > t}.
Using the same conditioning, we get for any τ ∈]0, 1/2[

P
{∣∣∣θ̄MoRU(h)− θ(h)

∣∣∣ > t

}
≤ E

P
 1

K

K∑
k=1

J̄εk,t − W̄n,t ≥
1

2
− τ

∣∣∣ Sn


+ P
{
W̄n,t − q̄t ≥ τ − q̄t

}
.

Once again, observe that

W̄n,t =
1(
n
B

) ∑
I

1

{∣∣∣∣ 2

B(B − 1)

∑
1≤j<j′≤B

h(ZIj , ZIj′ )− θ(h)

∣∣∣∣ > t

}
,

with
∑

I defined like in Definition 6.1, is a U -statistic of degree B, with bounded
symmetric kernel h(Z1, . . . , ZB) = 1

{∣∣∣ 2
B(B−1)

∑
1≤j<j′≤B h(XIj , XIj′ )− θ(h)

∣∣∣ > t
}
.

One may also show (Appendix B.1) that

q̄t ≤
1

t2

(
4σ2

1(h)

B
+

2σ2
2(h)

B(B − 1)

)
,

so that the use of conditional Hoeffding’s inequality and the Hoeffding’s inequality for
U -statistics (Proposition 6.3) applied to W̄n,t leads to the following upper bound

exp

−2K

(
1

2
− τ
)2
+ exp

−2
n

B

τ − 1

t2

(
4σ2

1(h)

B
+

2σ2
2(h)

B(B − 1)

)2
 .

Choosing K =

⌈
ln(2/δ)

2( 1
2
−τ)2

⌉
ensures that the first term is lower than δ/2. Choosing

B = 2(τ−λ)2n
ln(2/δ) , λ ≤ τ , ensures that the second term is also bounded by δ/2, as long as

t =

√√√√ 1

λ

(
4σ2

1(h)

B
+

2σ2
2(h)

B(B − 1)

)
≤ 2σ1(h)

√
1

λB
+
√

2σ2(h)

√
1

λB(B − 1)
.

The dominant term is obviously the first one, and it is similar to that in Proposition 7.17.
The optimization is λ is the same, and one should pick λ = τ/3, and B = 8τ2n

9 ln(2/δ) .

Changing toB =

⌊
8τ2n

9 ln(2/δ)

⌋
, and usingB ≥ B−1 ≥ 4τ2n

9 ln(2/δ) forB ≥ 3 (see Appendix C),

does not change the inequality in δ/2 while leading to the slightly modified final result

t ≤ 3
√

3

τ3/2
σ1(h)

√
ln(2/δ)

n
+

9
√

6

4τ5/2
σ2(h)

ln(2/δ)

n
.
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Remark 7.31. Again, one may observe that constants of Proposition 7.23 are recovered
by letting τ tend to 1/2, that every Hoeffding’s inequality use is valid, and that we do
have 3 ≤ B ≤ n with the prescribed expressions.

Although randomized, the MoRU does not benefit from the interesting lower variance
property of the incomplete U -statistics. Trying to leverage this attractive characteristic
is at the core of the next subsection.

7.4.3 Alternatives and Extensions

As already briefly mentioned in the last paragraph of Section 7.3, computing complete
U -statistics on randomized blocks is not the only way to authorize every observation
to be paired to any other one. Another strategy would involve directly sampling from
the pairs and computing incomplete U -statistics (see Section 6.4.1). Such an approach
is developed in the following subsection, as well as a generalization of the MoRU’s
concentration bound (Proposition 7.30) to U -statistics of arbitrary degree.

The Medians-of-Incomplete-U-Statistics Estimator

In Section 6.4.1, we have highlighted that building incomplete U -statistics rather than
complete ones may diminish the variance of the final estimate obtained. In order to
incorporate this remark into the MoRU framework, it is completely possible to imagine
a Median-of-Incomplete-U -Statistics, as described in Definition 7.32 and Figure 7.6.
The underlying idea is that taking the median of estimates with lower variances should
necessarily induce an improvement in the performance of the overall estimator.

Definition 7.32. Let Sn = {Zi}i≤n be a sample of n independent realizations of
a Z-valued random variable Z, and h as in Definition 7.22. Let K ∈ N, M ≤
n(n − 1)/2, and (Pk)k≤K be K blocks of pairs of size M , sampled independently and
uniformly over the n(n− 1)/2 possible pairs, with or without replacement. For k ≤ K,
let Ũk(h) denote the incomplete U -statistic that is built on the M pairs of the block
of pairs Pk. Namely, Ũk(h) = 1

M

∑
(i,j)∈Pk h(Zi, Zj). The Median-of-Incomplete-U -

Statistics (MoIU) estimator is then given by

θ̃MoIU(h) = median(Ũ1(h), . . . , ŨK(h)).

Although this new procedure is expected to improve the performances thanks to the
reduced variances of the incomplete U -statistics, it is harder to analyze theoretically.
The first thing that can be noticed is that there is no independence between the base
estimates Ũk(h). So one would be tempted to use the same proof path as for MoRM
and MoRU. Unfortunately, in this setting, the conditional expectation of the sum of the
indicator variables, which reads

W̃n,t =
1n(n−1)
2

M


∑
I

1


∣∣∣∣∣∣∣

1

M

M∑
j=1

h
(
Z
I

(1)
j

, Z
I

(2)
j

)
− θ(h)

∣∣∣∣∣∣∣ > t

 ,

where the symbol
∑

I refers to the summation over all unordered subsets I ofM integers
chosen in {1, . . . , n(n− 1)/2}, and (I

(1)
j , I

(2)
j ) represents the jth pair of subset I, cannot

be identified as a U -statistic, exactly as in Section 7.2.3.
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Figure 7.6 – MoIU’s procedure

Similarly, the use of the bounded differences inequality is not sufficient here. Assume
that one observation changes (so n − 1 pairs of observations change). The probability
of sampling at least one of the changed pairs among the M ones is

1−
(

1− 2

n

)M
≤ 2M

n
with replacement,

1−

(n− 1)(n− 2)/2

M


n(n− 1)/2

M

 ≤ 2M

n− 2
without replacement.

Refer to Appendix D for details about this last inequality. The maximal deviation of
the functional if one observation is changed being equal to the previously explicited
probabilities, the bounded differences inequality (for the replacement case) yields a
bound in exp(−n(τ − q̃t)2/(4M2)). Recall that q̃t may be bounded using Chebyshev’s
inequality and is of the orderO(1/t2M) thanks to the variance formula of the incomplete
U -statistic (Equation (6.9)). Hence, to derive reasonable guarantees, we need M to be
of the order O(n), which jeopardizes the bound previously obtained. The analysis is
similar without replacement.

Exactly like when other sampling schemes were tested within the MoRM procedure
(section 7.2.3), trying to incorporate incomplete U -statistics into MoRU compromises
every proof techniques we have developed so far. Despite the absence of theoretical
guarantees, empirical evidences of Section 7.5 tend however to validate this approach.
A future key research direction would consist in a deeper investigation of this estimator,
which was one of the motivations to start considering randomizing MoMs.

MoRU for U-Statistics of Arbitrary Degree

Just as for MoU, a version for MoRU for U -statistics of arbitrary degree is available.
The proof technique is very similar to that of Proposition 7.26 so we only state the
proposition.
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Proposition 7.33. Let d ∈ N∗, {Zi}i≤n be n ≥ d independent realizations of a Z-
valued random variable Z, and h : Zd → R symmetric such that E[h(Z1, . . . , Zd)] =
θ(h) < +∞, and Var(h(Z1, . . . , Zd)) = σ2(h) < +∞. Then, for any τ ∈]0, 1/2[, for any

δ ∈ [2e−4τ2n/9d, 1[, choosing K =

⌈
ln(2/δ)

2( 1
2
−τ)2

⌉
and B =

⌊
8τ2n

9 ln(2/δ)

⌋
, it holds

P


∣∣∣θ̄MoRU(h)− θ(h)

∣∣∣ > d∑
c=1

C (c, d, h, τ)

(
ln(2/δ)

n

)c/2 ≤ δ,
with C (c, d, h, τ) = d!

(d−c)!

(
3
2τ

)c√
3ζc(h)
τc! for c ≤ d, and ζc(h) as in Equation (6.1).

The next and final section of this chapter is devoted to numerical experiments that
corroborate the theoretical findings of previous sections.

7.5 Estimation Experiments

We now present numerical experiments supporting the relevance of the MoM variants
analyzed in the previous sections. In this section, simulations only focus on estimation
problems. Refer to Section 8.6 for experiments on learning problems. Both MoRM
and MoRU are studied, through the estimation of the mean and the variance of several
laws, three of which being heavy tailed. Performances are assessed in two ways: the
quadratic risks, reported in the Tables, and the empirical deviation probabilities (i.e.
the empirical quantiles) as suggested by Catoni (2012), summarized by the Figures.

7.5.1 MoRM Experiments

Considering inference of the expectation of four pre-specified distributions (Gaussian,
Student, Log-normal and Pareto), based on a sample of size n = 1000, seven estimators
are compared below: standard MoM, and six MoRM estimators, related to different
sampling schemes (SWoR, Monte-Carlo) or different values of the hyperparameter τ .
Results are obtained through 5000 replications of the estimation procedures. Beyond
the quadratic risk (Table 7.1), the estimators accuracies are assessed via the deviation
probabilities, i.e. empirical quantiles for different confidence levels δ (Figure 7.7). As
highlighted in Remark 7.20, τ = 1/6 leads to (approximately) the same number of
blocks as in the MoM procedure. However, MoRM usually select blocks of cardinality
lower than n/K, so that the MoRM estimator with τ = 1/6 uses less examples than
the MoM. Proposition 7.17 exhibits a higher constant for MoRM in that case, and it
is confirmed empirically here. The choice τ = 3/10 guarantees that the number of
MoRM blocks multiplied by their cardinality is equal to n. This way, MoRM uses as
much samples as MoM. Nevertheless, the increased variability leads to a slightly lower
performance in this case. Finally, τ = 9/20 is chosen to be close to 1/2, as suggested
by Remark 7.20. In this setting, the two constant factors are (almost) equal, and
MoRM even empirically shows a systematic improvement compared to MoM. Note that
the quantile curves should be decreasing. However, the estimators being δ-dependent,
different experiments are run for each value of δ, and the rare little increases are due to
this random effect.
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Table 7.1 – Quadratic Risks for the Mean Estimation, δ = 0.001

Normal (0, 1) Student (3)

MoM 1.49e-3 ± 2.18e-3 4.10e-3 ± 5.84e-3
MoRM1/6, SWoR 1.37e-2 ± 1.89e-2 2.95e-2 ± 4.45e-2
MoRM1/6, MC 1.37e-2 ± 1.90e-2 2.92e-2 ± 4.36e-2
MoRM3/10, SWoR 2.55e-3 ± 3.61e-3 6.02e-3 ± 8.68e-3
MoRM3/10, MC 2.64e-3 ± 3.72e-3 6.22e-3 ± 8.95e-3
MoRM9/20, SWoR 1.05e-3 ± 1.48e-3 2.64e-3 ± 3.72e-3
MoRM9/20, MC 1.05e-3 ± 1.46e-3 2.65e-3 ± 3.74e-3

Log-normal (0, 1) Pareto (3)

MoM 6.97e-3 ± 9.48e-3 1.02 ± 6.12e-2
MoRM1/6, SWoR 6.21e-2 ± 7.88e-2 1.12 ± 1.50e-1
MoRM1/6, MC 6.17e-2 ± 7.14e-2 1.13 ± 1.49e-1
MoRM3/10, SWoR 1.24e-2 ± 1.61e-2 1.05 ± 7.04e-2
MoRM3/10, MC 1.28e-2 ± 1.65e-2 1.06 ± 7.30e-2
MoRM9/20, SWoR 4.97e-3 ± 6.68e-3 1.03 ± 4.90e-2
MoRM9/20, MC 4.99e-3 ± 6.73e-3 1.03 ± 4.88e-2
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MoM
MoRM1/6, SWoR
MoRM1/6,MC
MoRM3/10, SWoR
MoRM3/10,MC
MoRM9/20, SWoR
MoRM9/20,MC

Figure 7.7 – Empirical Quantiles for the Different Mean Estimators on 4 Laws
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Table 7.2 – Quadratic Risks for the Variance Estimation, δ = 0.001

Normal (0, 1) Student (3)

MoU1/2;1/2 4.09e-3 ± 5.79e-3 1.73 ± 28.36

MoUPartition 3.24e-3 ± 4.48e-3 3.82e-1 ± 3.19e-1
MoRUSWoR 5.04e-3 ± 7.05e-3 5.12e-1 ± 3.88
MoIU1/6, SWoR 2.06e-3 ± 2.85e-3 1.78 ± 34.72

MoIU1/6, MC 2.05e-3 ± 2.81e-3 1.65 ± 26.22

MoIU3/10, SWoR 2.16e-3 ± 3.01e-3 1.14 ± 16.95

MoIU3/10, MC 2.11e-3 ± 2.88e-3 1.22 ± 17.47

Log-normal (0, 1) Pareto (3)

MoU1/2;1/2 2.61 ± 23.50 1.36 ± 36.80

MoUPartition 1.62 ± 1.42 9.30e-2 ± 5.65e-2
MoRUSWoR 2.01 ± 4.85 9.70e-2 ± 7.12e-2
MoIU1/6, SWoR 2.51 ± 21.90 1.38 ± 40.13

MoIU1/6, MC 2.62 ± 24.80 1.51 ± 42.91

MoIU3/10, SWoR 2.07 ± 14.83 8.50e-1 ± 21.99

MoIU3/10, MC 2.17 ± 15.24 8.90e-1 ± 22.29

10−6 10−5 10−4 10−3 10−2 10−1

δ

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

q̂ 1
−
δ(|

̂ θ−
θ|

)

Normal̂(0, 1)
MoCUPart

MoCUSWoR

MoIU3/10, SWoR

MoIU3/10,MC

10−6 10−5 10−4 10−3 10−2 10−1

δ

0.8

1.0

1.2

1.4

1.6

1.8

2.0

q̂ 1
−
δ(|

̂ θ−
θ|

)

Student̂(3)
MoCUPart

MoCUSWoR

MoIU3/10, SWoR

MoIU3/10,MC

10−6 10−5 10−4 10−3 10−2 10−1

δ

2.0

2.5

3.0

3.5

q̂ 1
−
δ(|

̂ θ−
θ|
)

Log-normal (0, 1)
MoCUPart

MoCUSWoR

MoIU3/10, SWoR

MoIU3/10,MC

10−6 10−5 10−4 10−3 10−2 10−1

δ

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

q̂ 1
−
δ(|

̂ θ−
θ|

)

Paretô(3)
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Figure 7.8 – Empirical Quantiles for the Different Variance Estimators on 4 Laws
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7.5.2 MoRU Experiments

As for the estimation of U -statistics, we aim at estimating the variance of the four
laws used above. Recall that the variance is a single sample U -statistic of degree 2 with
kernel h(z, z′) = (z−z′)2/2. Again, estimators are assessed through their quadratic risk
(Table 7.2) and empirical quantiles (Figure 7.8). The empirical quantiles confirm the
quadratic risks results: the τ parameter is crucial, making MoRM the worst or the best
estimate depending on its value. The sampling scheme seems not to affect much the
performance, even if the MC scenario is much more complex to analyze theoretically.
The partitioning MoU seems to outperform every other estimate. One explanation can
be that an extreme value may corrupt only one block within this method, whereas
randomized versions can suffer from it in several blocks.

7.6 Conclusion

In this chapter, we have recalled the principle of the Median-of-Means estimator, as
well as the deviation inequalities it satisfies. The estimator has further been extended
in several ways, either by considering random blocks and/or U -statistics, that involve
summing over pairs of observations. Moreover, guarantees of the same order as that of
the standard estimator have been derived, crucially relying on U -statistics concentration
properties (Chapter 6). A tighter analysis of V -statistics concentration should allow to
consider sampling with replacement schemes, so far neglected for technical reasons.

As shall be shown in Chapter 8, learning with Median-of-Means can be performed
through minimizing a MoM estimate of the risk, or by tournaments procedures. The
U -statistics extensions here introduced then allows to tackle pairwise learning problems.
As for the randomized version of MoM, it induces an adaptation of Gradient Descent
that naturally escapes the local minima.
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One of the most direct use in statistical learning of the MoM estimator can surely be
found in Bubeck et al. (2013). Authors use several robust mean estimators, as Catoni’s
M -estimator and the MoM, to design bandits strategies when the data is heavy-tailed.

However, the robustness benefits of the MoM go far beyond the mean estimation of a
reward function in reinforcement learning. Indeed, another natural approach to combine
statistical learning and MoM-inspired estimators is undoubtedly to adapt the ERM
paradigm with robust estimates of the risk, instead of the standard empirical mean
generally used. Thus, the MoM’s principle was already applied in Lerasle and Oliveira
(2011), where authors advocate to minimize a MoM estimate of the risk, with application
to Lasso estimators and least-squares density estimation. In Brownlees et al. (2015),
on the other hand, it is a Catoni’s version of the risk that is proposed to be optimized.
Finally, Hsu and Sabato (2014, 2016) tackle least-squares and sparse linear regression
by using an extension of the MoM to arbitrary metric spaces (see Section 7.1.3).

While more recent works by Lecué and Lerasle (2017); Lecué et al. (2018) have further
enriched the MoM-ERM framework with an algorithmic optimization strategy inspired
from Gradient Descent (GD), other approaches introduced by Lugosi and Mendelson
(2016); Lugosi et al. (2019) incorporate the MoM’s principle into statistical learning
theory through the tournament procedures.

In this chapter, we focus on the last two approaches, with a goal of extending them
to the pairwise framework, and to the randomized estimators when it is possible. The
standard MoM-ERM paradigm is first recalled in Section 8.1, followed by its randomized
(Section 8.2) and pairwise (Section 8.3) extensions. Section 8.4 is devoted to a general
statement of all MoM-like Gradient Descent strategies, while tournament procedures,
standard and pairwise, are addressed in Section 8.5. Lastly, some numerical experiments
are gathered in Section 8.6, while concluding remarks are collected in Section 8.7.
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Aside from Sections 8.1 and 8.5.1, all results presented in this chapter are taken from:

I P. Laforgue, S. Clémençon, P. Bertail. On medians of (Randomized) pairwise
means. In Proceedings of International Conference on Machine Learning, 2019.

In particular, notions introduced in Chapter 7 are crucial to the proofs derivation. The
tools used to control MoRM’s deviations are identical to those needed in Section 7.2,
while Sections 8.3 and 8.5.2 build upon the concept of MoU (see Definition 7.22). All
proofs presented in this chapter make use of the small ball method, or at least an
adaptation of it, developed in Mendelson (2014) and Koltchinskii and Mendelson (2015)
to handle empirical processes. The interested reader may refer to Lecué and Mendelson
(2013) and Mendelson (2016, 2017) for more references on this precise subject.

8.1 Minimizing a MoM Estimate of the Risk

As extensively explained in Chapter 7, MoM-like estimates provide interesting mean
estimators when data are heavy-tailed. Then, it is natural to study the results obtained
if the celebrated ERM paradigm, that advocates to minimize an empirical mean of
the risk, is slightly modified to the minimization of a MoM-like version of the risk.
Interestingly, the guarantees that can be derived in this MoM framework exhibit the
robustness of the MoM minimizers to outliers in the training dataset.

Our first focus is the MoM minimizer f̂MoM. It is the minimizer of a MoM estimate of
the risk, that is formally defined as

f̂MoM = argmin
f∈F

R̂MoM(f) = ÊMoM[`f ] = median

(∑
i∈B1

`(f, Zi), . . . ,
∑
i∈BK

`(f, Zi)

) ,

(8.1)
where (Bk)k≤K is a partition of Sn. One can already notice that it is partition dependent.
This feature makes the optimization procedure particularly challenging (Section 8.4),
in addition to the non-linearity of the median operator.

We start by reproducing the proof of Theorem 2 in Lecué et al. (2018), that bounds
the excess risk of the MoM minimizer in presence of outliers in the training sample.
The variant obtained for MoRM is detailed and analyzed in Section 8.2, while Mo(R)U
extensions are tackled in Section 8.3, with proofs focusing mainly on parts that differ
from the standard mean scenarios. The theorem first needs the following assumptions.

Assumption 8.1. There exists σF > 0 such that: sup
f∈F
‖f‖L2 =

√
E
[
f(X)2

]
≤ σF .

Assumption 8.2. The training sample Sn is composed of informative observations,
sampled from the law of interest, indexed by I (#I = nI), and outliers, potentially
adversarial, indexed by O (#O = nO). Let K denote the set of block indexes such that
the associated block contains no outlier: K = {k ≤ K : Bk ∩ O = ∅} (#K = nK), and
J the set of all indexes contained in blocks containing no outliers: J = ∪k∈KBk. We
now need a slightly modified version of the Rademacher complexity, and assume that it
is finite:

R(F) = max
A∈{I,J}

E

sup
f∈F

∑
i∈A

σif(Zi)

 < +∞,

with (σi)i∈A being #A i.i.d. Rademacher random variables.
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Remark 8.3. This Rademacher complexity definition differs in two ways from that
introduced in Chapter 1: it is taken with respect to either I or J, and thus is not rescaled
by the number of points considered. In order to avoid accumulating notation, we now
consider that R(F) refers to the quantity defined in Assumption 8.2.

While the previous assumption characterizes the complexity of F , the following one
describes a form of Lipschitz continuity of the loss function.

Assumption 8.4. There exists L > 0 such that for all (x, y) ∈ X×Y, for all f, f ′ ∈ F2:

|`f (x, y)− `f ′(x, y)| ≤ L|f(x)− f ′(x)|.

Remark 8.5. Assumption 8.4 holds for classical relaxations of the 0 − 1 loss such as
the hinge loss or the logistic loss. In these examples, L may be chosen equal to 1.

We now state the theorem that upper bounds the excess risk of the MoM minimizer.

Theorem 8.6. Grant Assumptions 8.1, 8.2 and 8.4. Assume that n ≥ K ≥ 4nO, and
let ∆ = 1/4− nO/K. Then with probability at least 1− 2 exp(−2∆2K) it holds

R(f̂MoM) ≤ R(f∗) + 16Lmax

σF√K

n
,
8R(F)

n

 .

Proof. Using the fact that f̂MoM minimizes R̂MoM(`f ) over F , one gets

R(f̂MoM)−R(f∗) ≤ R(f̂MoM)− R̂MoM(f̂MoM) + R̂MoM(f∗)−R(f∗),

≤ 2 sup
f∈F

∣∣∣R̂MoM(f)−R(f)
∣∣∣ ,

≤ 2 sup
f∈F

∣∣∣ÊMoM(`f − E[`f ])
∣∣∣ . (8.2)

Focus now on the deviation of its right-hand side. One has

P

{
sup
f∈F

ÊMoM(`f − E[`f ]) > t

}
≤ P

sup
f∈F

K∑
k=1

1

{
Êk[`f ]− E[`f ] > t

}
≥ K

2

 , (8.3)

with the notation Êk[`f ] = 1
B

∑
i∈Bk `f (Zi).

Introducing ψ : t 7→ (t− 1)1{1 ≤ t ≤ 2}+ 1{t ≥ 2} and noticing that ψ(t) ≥ 1{t ≥ 2}:

sup
f∈F

K∑
k=1

1

{
Êk[`f ]− E[`f ] > t

}

≤ sup
f∈F

∑
k∈K

E

ψ
2(Êk[`f ]− E[`f ])

t


+ (K − nK)

+ sup
f∈F

∑
k∈K

ψ

2(Êk[`f ]− E[`f ])

t

− E

ψ
2(Êk[`f ]− E[`f ])

t


 .
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As ψ(t) ≤ 1{t ≥ 1}, it holds:

E

ψ
2(Êk[`f ]− E[`f ])

t


 ≤ P

{
Êk[`f ]− E[`f ] ≥ t

2

}
,

≤
4 Var

(
Êk[`f ]

)
t2

,

≤ 8L2

Bt2
E
[
f(X)2

]
. (8.4)

Noticing that (K − nK) ≤ nO, one has:

sup
f∈F

K∑
k=1

1

{
Êk[`f ]− E[`f ] > t

}

≤ K

8L2σ2
F

Bt2
+

nO
K

+ sup
f∈F

1

K

∑
k∈K

ψ

2(Êk[`f ]− E[`f ])

t

− E

ψ
2(Êk[`f ]− E[`f ])

t





As 0 ≤ ψ ≤ 1, the bounded-difference inequality yields that for any y > 0, it holds with
probability at least 1− e−2Ky2

sup
f∈F

1

K

∑
k∈K

ψ

2(Êk[`f ]− E[`f ])

t

− E

ψ
2(Êk[`f ]− E[`f ])

t




≤ E

sup
f∈F

1

K

∑
k∈K

ψ

2(Êk[`f ]− E[`f ])

t

− E

ψ
2(Êk[`f ]− E[`f ])

t



+ y.

Now, by symmetrization arguments (see Giné and Zinn (1984) for instance), one has

ESn

sup
f∈F

1

K

∑
k∈K

ψ

2(Êk[`f ]− E[`f ])

t

− E

ψ
2(Êk[`f ]− E[`f ])

t





≤ 2ESn,σ

sup
f∈F

1

K

∑
k∈K

σkψ

2(Êk[`f ]− E[`f ])

t


 ,

with (σk)k≤nK
being nK i.i.d. Rademacher random variables. Then, by the contraction

principle, since ψ is 1-Lipschitz with ψ(0) = 0:

ESn,σ

sup
f∈F

1

K

∑
k∈K

σkψ

2(Êk[`f ]− E[`f ])

t


 ≤ ESn,σ

sup
f∈F

2

Kt

∑
k∈K

σk(Êk[`f ]− E[`f ])


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Finally, by the symmetrization principle:

ESn,σ

sup
f∈F

∑
k∈K

σk(Êk[`f ]− E[`f ])

 ≤ 2

B
ESn,σ

sup
f∈F

∑
i∈J

σi`f (Zi)

 ≤ 2L

B
R(F).

Combining all inequalities, it holds with probability at least 1− e−2Ky2

sup
f∈F

K∑
k=1

1

{
Êk[`f ]− E[`f ] > t

}
≤ K

(
8L2σ2

FK

nt2
+

nO
K

+ y +
8LR(F)

tn

)
(8.5)

Setting ∆ = 1
4 −

nO
K , y = ∆, and t = 8Lmax

(
σF

√
K
n ,

8R(F)
n

)
, one gets:

P

sup
f∈F

K∑
k=1

1

{
Êk[`f ]− E[`f ] > t

}
≤ K

2

 ≥ 1− e−2K∆2
,

that implies:

P

sup
f∈F

ÊMoM(`f − E[`f ]) > 8Lmax

σF√K

n
,
8R(F)

n


 ≤ e−2K∆2

,

and by the symmetry of the previous analysis:

P

sup
f∈F

∣∣∣ÊMoM(E[`f ]− `f )
∣∣∣ > 8Lmax

σF√K

n
,
8R(F)

n


 ≤ 2e−2K∆2

.

Combining with Equation (8.2), one finally gets that it holds with probability at least
1− 2e−2∆2K

R(f̂MoM) ≤ R(f∗) + 16Lmax

σF√K

n
,
8R(F)

n

 .

What is remarkable with Theorem 8.6 is that guarantees may be derived despite the
presence of outliers in the dataset. If one takes a look back to Equation (8.1), an
intuitive explanation might be the following: as (Bk)k≤K is a partition of Sn, at most
nO small empirical risk estimates are contaminated; and if K is large enough (compared
to nO), one may hope that a non-contaminated small estimate is chosen as the median.

We now extend the previous analysis to the case of a MoRM minimizer. An additional
difficulty lies in the fact that blocks are now sampled at random (and not a partition), so
that outliers may be selected more than once. If Theorem 8.6 is reproduced from Lecué
et al. (2018), results presented in the next section are new and part of this manuscript’s
contribution.
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8.2 Minimizing a MoRM estimate of the Risk

In this subsection, we thus analyze the impact of considering a MoRM minimizer rather
than the MoM minimizer advocated in Theorem 8.6. As a reminder, it is defined as

f̂MoRM = argmin
f∈F

R̄MoRM(f) = ĒMoRM[`f ] = median

(∑
i∈Bk

`(f, Zi), k ≤ K
) ,

where (Bk)k≤K are K i.i.d. subsamples of size B sampled uniformly over Sn, without
replacement within a block, but with replacement from one block to another. Refer to
Section 7.2.1 for more details. Before proceeding, we need an additional assumption.

Assumption 8.7. Let B ∈ N∗. For all f ∈ F , for all t > 0, define qf,t : ZB → {0, 1}
such that

qf,t(Z1, . . . , ZB) = 1

 1

B

B∑
i=1

`f (Zi)− E[`f ] > t

 .

For all t > 0, set QF ,t = {qf,t : f ∈ F}. There exists d <∞ such that

sup
t>0

dimV C

(
QF ,t

)
< d,

with dimV C(C) the Vapnik-Chervonenkis dimension of any class C.

An important corollary of Assumption 8.7 is an upper-bound on the growth functions
of the QF ,t. It is obtained by Sauer’s lemma, as detailed below.

Corollary 8.8. Assume that nI = KB, and that the QF ,t satisfy Assumption 8.7.

Then, for all t > 0, for any K ≥
√

d
λnI lnnI it holds

ΠQF,t(K) = max
Z(k)∈ZB , k≤K

#

{(
qf,t(Z

(1)), . . . , qf,t(Z
(K))

)
: f ∈ F

}
≤ eλK .

Proof. Sauer’s lemma gives

ΠQF,t(K) ≤
(

1 +

(
nI
B

))d
≤ nBdI = n

nId

K
I .

On the other hand, one has√
d

λ
nI lnnI ≤ K, or again

nId

K
lnnI ≤ λK, so that n

nId

K
I ≤ eλK .

We can now state the theorem that bounds the excess risk of the MoRM minimizer.

Theorem 8.9. Grant Assumptions 8.1, 8.2, 8.4 and 8.7. Furthermore, assume that K
satisfies nI ≥ K ≥ max

{
16nO, 8

√
dnI lnnI,

nI
8

}
, and let ∆ = 1

16 −
nO
K , and B = nI/K.

Then with probability at least 1− 6 exp

(
−K min

{
2∆2, 1

64

})
it holds

R(f̂MoRM) ≤ R(f∗) + 32Lmax

(
σF

√
K

nI
,
16R(F)

nI

)
.
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Proof. The beginning of the proof is similar to that of Theorem 8.6. We have

R(f̂MoRM)−R(f∗) ≤ 2 sup
f∈F

∣∣∣ĒMoRM(`f − E[`f ])
∣∣∣ ,

and

P

{
sup
f∈F

ĒMoRM(`f − E[`f ]) > t

}
≤ P

sup
f∈F

1

K

K∑
k=1

1

{
Ēk[`f ]− E[`f ] > t

}
≥ 1

2

 ,

where we have used the notation Ēk[`f ] = 1
B

∑
i∈Bk `f (Zi) = 1

B

∑n
i=1 εk,i `f (Zi), and

ĒMoRM(`f ) = median(Ē1[`f ], . . . , ĒK [`f ]). For the rest of the proof, we introduce

Īk,t(f) = 1

{
Ēk[`f ]− E[`f ] > t

}
.

The proof is then similar to that of MoRM estimator’s concentration (see Section 7.4.2):
we condition upon the data and decompose the total deviation into 1) the deviation of
Īk,t(f) from its conditional expectation E[Īk,t(f) | Sn], and 2) that of the U -statistic
E[Īk,t(f) | Sn] from the overall expectation.

Another important thing to notice is that K is now a random variable, that depends
on the outliers present in each random block Bk. In order to avoid problems when
considering sums over k ∈ K, we proceed as follows:

sup
f∈F

1

K

K∑
k=1

1

{
Ēk[`f ]− E[`f ] > t

}
≤ K − nK

K
+ sup
f∈F

1

K

∑
k∈K

Īk,t(f),

≤ K − nK
K

+ sup
f∈F

1

K

K∑
k=1

Ī I
k,t(f),

with Ī I
k,t(f) equal to Īk,t(f) , but taken exclusively on informative points. The last

inequality just means that we have artificially added K − nK positive terms in order to
have a sum independent of K. In the following, expectation are thus taken with respect
to S I

n , the set of informative points, but in order to avoid overwhelming notation, we
drop the I superscript. The key part to keep in mind is that outliers have been taken
care of through the (K−nK)/K term. Finally, we use ψ as introduced in Theorem 8.6.
With the notation

Ψ̄k,t(f) = ψ

(
2(Ēk[`f ]− E[`f ])

t

)
≥ Īk,t(f),

we have:

sup
f∈F

1

K

K∑
k=1

1

{
Ēk[`f ]− E[`f ] > t

}
≤ K − nK

K︸ ︷︷ ︸
(A)

+ sup
f∈F

1

K

K∑
k=1

Īk,t(f)− E
[
Īk,t(f) | Sn

]
︸ ︷︷ ︸

(B)

+ sup
f∈F

E
[
Ψ̄1,t(f) | Sn

]
− E

[
Ψ̄1,t(f)

]
︸ ︷︷ ︸

(C)

+ sup
f∈F

E
[
Ψ̄1,t(f)

]
︸ ︷︷ ︸

(D)

.

We now bound each term successively.
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Bounding (A). As already discussed above, one major difference with MoM minimizer
is that nK is now a random variable, that cannot be upper bounded by nO almost surely.
By the independence of the blocks, K−nK is a Binomial random variable, with K trials,
and parameter p equal to the probability that one block selects at least one outlier. It
can be shown using the same technique as in Appendix D that p ≤ nOB/n. Therefore
K − nK as an expected value equal to KBnO/n. In the case where KB = n, we
recover the upper bound used for MoM. As K − nK is now random, we have to bound
its deviation from its expected value. It can be done using Hoeffding’s inequality for
instance. We get that for all zA > 0, it holds with probability at least 1−exp(−2z2

A/K)

K − nK ≤
KBnO
n

+ zA,

or again, with probability at least 1− exp(−2z2
AK) it holds

(A) ≤ BnO
n

+ zA.

Bounding (D). It can be bounded exactly as for Equation (8.4), but with the variance
of Ēk[`f ] instead of that of Êk[`f ]. However, as proved in Chapter 7, the variance is
equal in the non-replacement scenario, and using Assumptions 8.11 and 8.13, one finally
gets that it holds almost surely

(D) ≤ 8L2σ2
F

Bt2
.

Bounding (B). One may recognize the deviation of an incomplete U -statistic (see
Section 6.4.1) from its complete version. This question has been addressed for instance
in Clémençon et al. (2013). The key part is to discard the supremum by means of
the growth function (or the VC-dimension), hence the necessity to keep Īk,t(f) that
takes a finite number of values, and not using Ψ̄k,t(f) directly. The use of standard
Hoeffding’s inequality conditioned upon Sn with the union bound then allows to finish.
Corollary 8.8 together with the hypothesis of the theorem implies that

ΠQF,t(K) = max
Sn

∣∣∣∣∣
{(

Ī1,t(f), . . . , ĪK,t(f)
)

: f ∈ F
}∣∣∣∣∣ ≤ eK64 .

Then, it holds with probability at least 1− exp
(

(1/64− 2z2
B)K

)
(B) ≤ zB.

Bounding (C). First, an application of the bounded-differences inequality yields that
it holds with probability at least 1− exp

(
−2z2

CnI/B
2
)

(C) ≤ E

[
sup
f∈F

E
[
Ψ̄1,t(f) | Sn

]
− E

[
Ψ̄1,t(f)

]]
+ zC .

The key part is then to consider the conditional expectation as a U -statistic of degree
B and to rewrite it as an average of sums of i.i.d. blocks, as it is done in Clémençon
et al. (2008). For the sake of simplicity, we assume from here that nI = KB. As
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discussed at length in Section 7.1, the MoRM framework is usually way more flexible,
but it simplifies the computation here. Indeed, it holds

E
[
Ψ̄k,t(f) | Sn

]
=

1(
nI
B

)∑
I

ψ

2
(

1
B

∑B
j=1 `f (ZIj )− E[`f ]

)
t

 ,

=
1

nI!

∑
π

1

K

K∑
k=1

ψ


2

(
1
B

(
`f (Zπ(k)) + `f (Zπ(K+k)) + . . .+ `f (Zπ((B−1)K+k))

)
− E[`f ]

)
t

 .

Combining this writing with the previous inequality, we get that it holds with probability
at least 1− exp(−2z2

CK
2/nI) by

(C) ≤ E

sup
f∈F

1

K

K∑
k=1

ψ

2
(

1
B

∑B
b=1 `f (Z(b−1)K+i)− E[`f ]

)
t

− E
[
Ψ̄1,t(f)

]+ zC .

From here, we recover an expression similar to what is encountered in the proof of
Theorem 8.6, in the sense that the K blocks of variables are independent, so that the
symmetrization inequality, the concentration principle, the symmetrization inequality
again, and the contraction principle finally yield

E

sup
f∈F

1

K

K∑
k=1

ψ

2
(

1
B

∑B
b=1 `f (Z(b−1)K+i)− E[`f ]

)
t

− E
[
Ψ̄1,t(f)

]

≤ 2ESn,σ

sup
f∈F

1

K

K∑
k=1

σkψ

2
(

1
B

∑B
b=1 `f (Z(b−1)K+i)− E[`f ]

)
t


 ,

≤ 4

nIt
ESn,σ

sup
f∈F

K∑
k=1

σk

B∑
b=1

`f (Z(b−1)K+i)− E[`f ]

 ,
≤ 8

nIt
ESn,σ

sup
f∈F

∑
i∈I

σi`f (Zi)

 ,
≤ 8L

nIt
R(F).

Combining all bounds. Combining the bounds for (A), (B), (C) and (D), we get that
it holds with probability at least 1−exp(−2z2

AK)−exp((1/64−2z2
B)K)−exp(−2z2

CK
2/nI)

sup
f∈F

1

K

K∑
k=1

1

{
Ēk[`f ]− E[`f ] > t

}
≤ nO

K
+

8L2Kσ2
F

nIt2
+

8L

nIt
R(F) + zA + zB + zC .
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Choosing zA = ∆ = 1
16−

nO
K , zB = 1

8 , zC =
√

nI
128K , and t ≥ 16Lmax

(
σF

√
K
nI
, 16R(F)

nI

)
,

it holds with probability at least 1− exp(−2∆2K)− 2 exp(−K/64)

sup
f∈F

1

K

K∑
k=1

1

{
Ēk[`f ]− E[`f ] > t

}
≤ 1

16
+

1

32
+

1

32
+

1

8
+

√
nI

128K
.

If nI ≤ 8K, the latter is lower than 1/2, and we get

P

sup
f∈F

∣∣∣ĒMoRM(`f − E[`f ])
∣∣∣ > 16Lmax

(
σF

√
K

nI
,
16R(F)

nI

) ≤ 6e
−K min

{
2∆2, 1

64

}
.

The conclusion follows directly.

Remark 8.10. One important remark that can be made is that nI appears in the bound,
rather than n. This comes from the introduction of the expectation of the randomized
mean given the (informative) data. Unfortunately, this seems inevitable, and it may
constitute a limitation of the randomized framework compared to the partition one. This
difference however completely vanishes if the dataset contains no outliers.

In the spirit of what has been done in Chapter 7, we now consider the extension to
minimizers of MoM-like estimates of a U -statistic criterion.

8.3 The MoM-U Minimizers

In this subsection, we extend the MoM minimizer scheme to learning criteria that
write as U -statistics. Recall that several examples of such criteria can be found in
Section 6.2.2. We are thus interested in finding a function h : X × X → R that
minimizes

EZ,Z′
[
`(h, Z, Z ′)

]
,

with Z,Z ′ independent identically distributed as P . As P is unknown, one often choose
to minimize instead

2

n(n− 1)

∑
i<j

`(h, Zi, Zj),

which is the complete U -statistics based on the full sample Sn = {Z1, . . . , Zn}. Here,
we rather analyze the properties of

ĥMoM−U ∈ argmin
h∈H

ÊMoM−U

[
`(h, Z, Z ′)

]
,

with ÊMoM−U being a generic notation for any MoM inspired estimate of a U -statistic
risk, that might be based either on the MoM on Half estimator (see Section 7.3.3),
the Median-of-U -Statistics estimator (Section 7.3), or the Median-of-Randomized-U -
Statistics estimator (Section 7.4). For the Median-of-U -Statistics estimator, and with
(B1, . . . , BK) denoting a partition of Sn into K blocks of cardinal B. we have

ÊMoU[`h] =
2

B(B − 1)
median


∑
i,j∈B2

1
i<j

`h(Zi, Zj), . . . ,
∑

i,j∈B2
K

i<j

`h(Zi, Zj)

 ,
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Analogously to Theorem 8.6, we need the following assumptions to proceed.

Assumption 8.11. There exists σH > 0 such that: sup
h∈H
‖h‖L2 =

√
E
[
h(X,X ′)2

]
≤ σH.

Assumption 8.12. The training sample Sn is still composed of informative points,
sampled from the law of interest, indexed by I, and outliers, potentially adversarial,
that are indexed by O. The notation K and J remains unchanged. We now introduce a
Rademacher complexity tailored to U -statistics:

R(H) = max
A∈{I,J}

E

sup
h∈H

∑
i≤
⌊
#A/2

⌋σi h
(
Zi, Z⌊#A/2

⌋
+i

) < +∞,

with (σi)i≤
⌊
#A/2

⌋ being
⌊
#A/2

⌋
i.i.d. Rademacher random variables.

We also need an analogous assumption on the Lipschitz continuity of `.

Assumption 8.13. There exists L > 0 such that for all z = (x, y), z′ = (x′, y′) ∈
(X × Y)2, for all h, h′ ∈ H2:

|`h(z, z′)− `h′(z, z′)| ≤ L|h(x, x′)− h′(x, x′)|.

As suggested in Section 7.3.3, one first way to extend the MoM vision to U -statistics
is to build independent pairs h(Zi, Zbn/2c+i) and then apply a traditional MoM on the
new bn/2c observations created. This method precisely exhibits the quantity defined in
Assumption 8.12, and one gets a direct adaptation of Theorem 8.6.

Theorem 8.14. Grant Assumptions 8.11 to 8.13. Assume that bn/2c > K > 4nO, and
let ∆ = 1/4− nO/K. Then with probability at least 1− 2 exp(−2∆2K) it holds

R(ĥMoM1/2
) ≤ R(h∗) + 16Lmax

σH
√

K

bn/2c ,
8R(H)

bn/2c

 .

A bit more complex is the case of the ÊMoU minimizer. Indeed, unlike for the ÊMoM1/2

minimizer, the computation of this estimator involves pairs that are not independent.
Therefore, some parts of Theorem 8.6’s proof needs to be adapted.

Theorem 8.15. Grant Assumptions 8.11 to 8.13. Assume that n > K > 4nO, and let
∆ = 1/4− nO/K. Then with probability at least 1− 2 exp(−2∆2K) it holds

R(ĥMoU) ≤ R(h∗) + 16Lmax

σH√K

n
,
8R(H)

bn/2c

 .

Proof. Using the independence between the blocks, everything can be reused until the
second use of the symmetrization inequality. We have to bound

ESn,σ

sup
h∈H

∑
k∈K

σk(Êk[`h]− E[`h])

 = ESn,σ

 sup
h∈H

∑
k∈K

σk

(
2

B(B − 1)

∑
i,j∈B2

k
i<j

`h(Zi, Zj)−E[`h]

).
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The key part is then to use a decoupling argument, that transforms the U -statistic
Rademacher average into a sum of independent observations. This can be done for
instance using the same lines as in Lemma A.1 in Clémençon et al. (2008):

ESn,σ

 sup
h∈H

∑
k∈K

σk

(
2

B(B − 1)

∑
i,j∈B2

k
i<j

`h(Zi, Zj)− E[`h]

)

= ESn,σ

 sup
h∈H

∑
k∈K

σk

(
1

B!

∑
π

1

bB/2c

bB/2c∑
ik=1

`h(Zik , ZbB/2c+ik)− E[`h]

),
≤ 1

B!

∑
π

ESn,σ

 sup
h∈H

∑
k∈K

σk

(
1

bB/2c

bB/2c∑
ik=1

`h(Zik , ZbB/2c+ik)− E[`h]

),
= ESn,σ

 sup
h∈H

∑
k∈K

σk

(
1

bB/2c

bB/2c∑
ik=1

`h(Zik , ZbB/2c+ik)− E[`h]

),
≤ 2

bB/2cESn,σ

 sup
h∈H

∑
i∈J

σi `h

(
Zi, Zbn/2c+i

),
≤ 2L

bB/2cR(H),

where we have used successively a specific writing of U -statistics, Jensen’s inequality,
the symmetrization inequality on independent observations already used in the proof
of Theorem 8.6 (the notation ik refers to the ith index of block Bk), and the Lipschitz
continuity of `. The rest of the proof is analogous to that of Theorem 8.6.

Remark 8.16. Theorems 8.14 and 8.15 are very similar. The advantage of using
complete U -statistics instead of the average based on independent pairs can be seen on
the range of admissible K’s, as well as on the first term in the max. Recovering the
same second term is expected, as the Rademacher averages over all pairs that appear
when using MoU are converted into Rademacher averages over independent pairs, as
for MoM1/2.

Minimizing MoRU or MoIU estimates of the risk suffers from the same drawbacks as
MoRM. In particular, the absence of independence between the blocks prevents from
the use of standard symmetrization arguments, and makes results harder to derive.

The last part of this section is devoted to the design of algorithms capable of computing
the solutions to the above mentioned problems.

8.4 The Mo(R)M and Mo(R)U Gradient Descents

Now that the benefits of minimizing a MoM estimate of the risk have been established,
we design algorithms to compute the desired solutions. They are based on Gradient
Descent (GD), and adapted to the MoM framework.

Assume that F (respectively H for U -statistics) is parametrized, so that f = fu, u ∈ Rp
(h = hu respectively). Minimizing the MoM risk can be done as described in Figure 8.1.
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Median-of-Means Gradient Descent

1. Partition the dataset.

2. Compute the empirical risk on each block.

3. Select the block with the median empirical risk.

4. Compute a GD step based on the batch that corresponds to the median block.

5. Iterate.

Figure 8.1 – Median-of-Means Gradient Descent (MoM GD)

This algorithm can be seen as a batch Gradient Descent, with a specific criterion to
select the batch: it is the block with median empirical risk. This way, we can expect
that blocks containing possible outliers are not selected, ensuring a safe descent. On
the contrary, this algorithm should yield slower convergence on non-corrupted datasets,
as the least informative data points are selected at each iteration. These phenomena
are illustrated in Section 8.6 for instance.

However, it has been shown empirically (Remark 5 in Lecué et al. (2018)) that the
previously described procedure often finds local minima. This happens when the same
block is always selected as the median block, and one then minimizes the empirical risk
based on this specific block. In order to avoid this problem, one can artificially decide
to randomize the partition at each iteration. This way, it is highly improbable that the
same block is selected twice in a row.

It is direct to see that the procedure described in steps 1-5 above can be readily adapted
to MoRM. Furthermore, using a MoRM estimate, random by nature, directly prevents
from finding a local minimum. There is no need to introduce an artificial randomization
through the change of partition. The same remark can be made for the MoU/MoRU
gradient descents. All the procedures are summarized in Algorithm 8.1. Notice that in
order to simplify the notation, the random blocks usually denoted Bk are denoted as
Bk in Algorithm 8.1, so that the notation can be shared among different versions.

To analyze the convergence of Algorithm 8.1’s iterates, we need the next assumptions. In
order to avoid the statements of four different theorems (MoM, MoRM, MoU, MoRU),
we state general assumptions valid in all settings. It is of course possible to restrict
them to the particular case of interest.

Assumption 8.17. There exists M` > 0 such that ∀u ∈ Rp, and P -almost z, z′ ∈ Z2,∥∥∥∇u`(fu, z)∥∥∥
2
≤M`,∥∥∥∇u`(hu, z, z′)∥∥∥
2
≤M`.

Assumption 8.18. The sequence of steps (γt)t∈N∗ satisfies∑
t∈N∗

γt =∞,
∑
t∈N∗

γ2
t <∞.



CHAPTER 8. ROBUST LEARNING VIA
MEDIANS-OF-(RANDOMIZED-PAIRWISE)-MEANS 153

Algorithm 8.1 MoM/MoRM/MoU/MoRU Gradient Descents
input : Sn = {Z1, . . . , Zn}, K ∈ N∗ (≤ n/2 for MoM/MoU), B ≤ n for MoRM/MoRU

T ∈ N∗, (γt)t≤T ∈ RT+
init : u0 ∈ Rp

21 for epoch t from 1 to T do

// Select the median block

22 if MoM or MoU then
23 Choose a random permutation π of J1, nK
24 Build a partition B1, . . . , BK of {π(1), . . . , π(n)}

25 if MoRM or MoRU then
26 Sample K i.i.d. SWoR blocks B1, . . . , BK among Sn
27 for k ≤ K do
28 Rk =

∑
i∈Bk

`(fut , Zi) // MoM and MoRM

29 Rk =
∑

i<j∈B2
k

`(hut , Zi, Zj) // MoU and MoRU

30 Bmed such that median(R1, . . . , Rk) = RBmed

// Gradient step on selected block

31 ut+1 = ut − γt
∑

i∈Bmed

`(fut , Zi) // MoM and MoRM

32 ut+1 = ut − γt
∑

i<j∈B2
med

`(hut , Zi, Zj) // MoU and MoRU

33 return uT

Assumption 8.19. For almost all datasets, ∃umin ∈ Rp unique such that

umin = argmin
u∈Rp

Eπ
[
ÊMoM,π(`fu) | Sn

]
,

umin = argmin
u∈Rp

Eε
[
ÊMoRM(`fu) | Sn

]
,

umin = argmin
u∈Rp

Eπ
[
ÊMoU,π(`hu) | Sn

]
,

umin = argmin
u∈Rp

Eε
[
ÊMoRU(`hu) | Sn

]
.

Assumption 8.20. For almost all datasets, for almost all u ∈ Rp, for all ε > 0,

inf
u,‖u−umin‖>ε

(u− umin)>Eπ
[
∇uÊMoM,π(`fu) | Sn

]
< 0,

inf
u,‖u−umin‖>ε

(u− umin)>Eε
[
∇uÊMoRM(`fu) | Sn

]
< 0,

inf
u,‖u−umin‖>ε

(u− umin)>Eπ
[
∇uÊMoU,π(`hu) | Sn

]
< 0,

inf
u,‖u−umin‖>ε

(u− umin)>Eε
[
∇uÊMoRU(`hu) | Sn

]
< 0.
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Assumption 8.21. For almost all datasets, for almost all u ∈ Rp, there exists an open
convex set B containing u such that for any partition of J1, nK – any K i.i.d. SWoR
blocks – B1, . . . , BK , there exists kmed ≤ K such that for all v ∈ B

Rkmed
= median(R1, . . . , Rk),

with the notation introduced in Algorithm 8.1.

We are now ready to state the convergence theorem.

Theorem 8.22. Grant Assumptions 8.17 to 8.21. Then, the MoM/MoRM/MoU/MoRU
gradient descent algorithms (see Algorithm 8.1) converge:

‖uT − umin‖ a.s.−−−−→
T→∞

0.

Proof. Assumption 8.21 ensures that for any t ∈ N∗, there exists a open convex set B
containing ut−1 such that for all u ∈ B it holds

1

B

∑
i∈Bkmed

∇u`(fu, Zi) = ∇uÊMoM(`fu)
(
or = ∇uÊMoRM(`fu)

)
,

2

B(B − 1)

∑
i,j∈B2

kmed
i<j

∇u`(hu, Zi, Zj) = ∇uÊMoU(`hu)
(
or = ∇uÊMoRU(`hu)

)
.

From here, the rest of the proof is identical to that of the consistency of Stochastic
Gradient Descent (SGD), see e.g. Bottou (1998).

We conclude this subsection with a remark on the minimum attained by Algorithm 8.1.

Remark 8.23. It is important to notice that the minimum attained by Algorithm 8.1
is not a MoM, minimizer, but rather the minimizer of the expectation of the MoM
with respect to all possible permutation in Sn. The same goes for MoRM, with an
expectation over the selection vectors ε. However, one can expect a concentration of
individual MoM (respectively MoRM, MoU, MoRU) minimizers around the minimizer
of the expectation. Recall that in Chapter 7, we have studied the concentration of MoRM
and MoRU estimates around their expectation with respect to both ε and Sn. We can
reasonably expect smaller deviations from an expectation taken with respect to ε only,
at fixed Sn.

The next section investigates another way to use the MoM methodology in learning.
The introduced approach completely breaks with ERM or MoM minimizing. Namely,
it is based on tournament procedures.

8.5 Tournament Procedures

Statistical learning by tournament procedure has been first introduced in Lugosi and
Mendelson (2016). It basically consists in segmenting the training data into blocks of
equal size, on which the statistical performance of every pair of candidate decision rules
are compared. The prediction rule with highest performance on the majority of the
blocks is declared as the winner. In the context of nonparametric regression, functions
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having won all their duels have been shown to outperform empirical risk minimizers
with respect to the mean squared error under minimal assumptions, while exhibiting
robustness properties. In Section 8.5.1, we recall the standard tournament procedure,
together with its theoretical guarantees. Section 8.5.2 is then devoted to the extension
of the procedure to learning problems for which the performance criterion takes the form
of an expectation over pairs of observations, as may be the case in pairwise ranking,
clustering or metric learning (see Section 6.2.2).

8.5.1 Standard Tournament Procedure

In this subsection, we recall the standard tournament procedure introduced in Lugosi
and Mendelson (2016). For now, we restrict our attention to the least squares scalar
regression. Given Z = (X,Y ) a random variable valued in X × R according to an
unknown probability P , our goal is to find

f∗ = argmin
f∈F

EP

[(
f(X)− Y

)2
]
,

with F a given class of functions contained in RX . The two classical ways of assessing
the output f̂ of an algorithm are the L2 distance to f∗√√√√E

[(
f̂(X)− f∗(X)

)2
]
,

and the excess risk

R(f̂)−R(f∗) = E

[(
f̂(X)− Y

)2
]
− E

[(
f∗(X)− Y

)2
]
.

While ERM can be shown to provide good solutions when F is convex and Y is sub-
Gaussian (Lecué and Mendelson, 2013), its sensitivity to a small number of atypical
points makes it unusable when the data is heavy-tailed. The objective of Theorem 8.25
is to establish the existence of a procedure that exhibits a good f̂ even when the data has
not well-behaved tails. Before stating the theorem, we need the following assumption.

Assumption 8.24. The class F is locally compact and convex. The output random
variable Y is square integrable, and there exists L, σ > 0 such that

• ∀(f, f ′) ∈ F2, ‖f − f ′‖L4 ≤ L‖f − f ′‖L2,

• ∀f ∈ F , ‖f − Y ‖L4 ≤ L‖f − Y ‖L2,

• ‖f∗ − Y ‖L2 ≤ σ.

Theorem 8.25. Grant Assumption 8.24. Then, there exist c0, r > 0 that depend only
on L, σ and f∗ such that there exists a procedure that based on Sn, L, σ, r selects a
function f̂ ∈ F such that it holds with probability at least 1− exp(−c0nmin{1, σ−2r2})∥∥∥f̂ − f∗∥∥∥

L2

≤ cr,

and
R(f̂)−R(f∗) ≤ (cr)2.
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Standard Tournament Procedure

1. For every pair of candidate functions (f, f ′) ∈ F2, compute a MoM estimate of
‖f − f ′‖L1 based on the first sub-dataset:

DS(1)
n

(f, f ′) =
1

B
median

( ∑
i∈Bk

|f(Xi)− f ′(Xi)|, k ≤ K
)
.

2. If DS(1)
n

(f, f ′) is large enough, then compute a match between f and f ′, i.e. a
MoM estimate of R(f)−R(f ′) based on the second sub-dataset:

ΦS(2)
n

(f, f ′) =
1

B
median

( ∑
i∈Bk

(f(Xi)− Yi)2 − (f ′(Xi)− Yi)2, k ≤ K
)
.

If it is negative, i.e. f has a lower empirical risk on a majority of blocks, then
f wins the match. Otherwise, f ′ is declared as the winner.

3. Gather all candidates that have won all the matches they have been allowed
to play, called champions. Finally, based on the third sub-dataset, compute a
MoM estimate of (f ′ − f)(f − Y ) for every pair (f ′, f) of champions:

ΨS(3)
n

(f ′, f) =
1

B
median

( ∑
i∈Bk

(f ′(Xi)− f(Xi)) · (f(Xi)− Yi), k ≤ K
)
.

The output of the procedure is a champion f̂ winning all its last round home
matches ΨS(3)

n
(f ′, f) described above.

Figure 8.2 – Standard Tournament Procedure

The proof of Theorem 8.25 can be found in Lugosi and Mendelson (2016). We shall now
focus on the description of the procedure that achieves Theorem 8.25’s performance.
First assume, without loss of generality, that the original dataset Sn is actually of size
3n, and that it is divided into three parts of size n: S(1)

n ,S(2)
n and S(3)

n . The tournament
procedure is then summarized in Figure 8.2.

The rationale behind this approach is the following. If f∗ is one of the two candidates,
since it is only allowed to play matches against distant candidates, it should hopefully
win all of them with high probability. Therefore f∗ is in the final champions pool, and it
can be shown that it should win all its champion’s home matches with high probability.
Before extending the tournament to pairwise criteria, three remarks can be made.

Remark 8.26. Comparing Theorem 8.6 and Theorem 8.25, one can see that the latter
exhibits faster rates. Actually, it can be seen in the proof that all champions that have
won their first matches satisfy R(f)−R(f∗) ≤ ‖f−f∗‖L2 .

√
ln(1/δ)/n with probability

1 − δ, as the solutions of the MoM minimizing. The faster rate ln(1/δ)/n is obtained
after the computation of the final round among the champions.
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Remark 8.27. As discussed at length in Lugosi and Mendelson (2016), computing the
tournament winner is a nontrivial problem as soon as F does not contain a finite number
of elements. However, one could alternatively consider performing a tournament on an
ε-coverage of F , while controlling the approximation error of this coverage.

Remark 8.28. The adaptation to other losses than the square error is most of the time
easy. Indeed, for a positive loss function `, it is always possible to rewrite `(f, x, y) =
(
√
`(f, z)) − 0)2. Up to a change of variable, x becoming z, and y becoming 0, the

previous procedure allows to find an optimal
√
`(f∗, ·). If `(f, x, y) can be written as

˜̀(f(x)− y), with ˜̀ invertible, it is then easy to recover f∗.

The next subsection extends the tournament procedure to pairwise criteria.

8.5.2 Pairwise Tournament Procedure

As shall be seen in the following, the tournament procedure described in the previous
subsection naturally extends to criteria that are based on pairs. As a reminder, we first
focus on finding

h∗ = argmin
h∈H

EP⊗P

[(
h(X,X ′)− t(Y, Y ′)

)2
]
,

with H ⊂ RX×X the function class over which the criterion is optimized and t : Y2 → R
a given function that links a pair to its target. This might be e.g. a 0−1 label indicating
if the observations pertain to the same class, or some precomputed distance. Notice
that the extension to the general case

h∗ = argmin
h∈H

EP⊗P
[
`h(Z,Z ′)

]
can be achieved in a similar way as that described in Remark 8.28.

We first need an analog to Assumption 8.24. We then state the main theorem.

Assumption 8.29. The class H is locally compact and convex. The output random
variable t(Y, Y ′) is square integrable, and there exists L, σ > 0 such that
• ∀(h, h′) ∈ H2, ‖h− h′‖L4 ≤ L‖h− h′‖L2,

• ∀h ∈ H, ‖h− t(Y, Y ′)‖L4 ≤ L‖h− t(Y, Y ′)‖L2,

• ‖h∗ − t(Y, Y ′)‖L2 ≤ σ.
Theorem 8.30. Grant Assumption 8.29. Then, there exist c0, r > 0 that depend only
on L, σ and h∗ such that there exists a procedure that based on Sn, L, σ, r selects a
function ĥ ∈ H such that it holds with probability at least 1− exp(−c0nmin{1, σ−2r2})∥∥∥ĥ− h∗∥∥∥

L2

≤ cr,

and
R(ĥ)−R(h∗) ≤ (cr)2.

Unsurprisingly, this procedure is a tournament where MoM estimates are replaced by
MoU estimates. It is summarized in Figure 8.3 (in order to avoid the introduction of
new notation, it remains unchanged although U -statistics are now used). As for the
proof, it is a direct adaptation of that of Theorem 8.25, with the use of U -statistics
tools when necessary. We list below the main changes.
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Pairwise Tournament Procedure

1. For every pair of candidate functions (h, h′) ∈ H2, compute a MoU estimate of
‖h− h′‖L1 based on the first sub-dataset:

DS(1)
n

(h, h′) =
2

B(B − 1)
median

( ∑
i,j∈B2

k
i<j

∣∣∣h(Xi, Xj)− h′(Xi, Xj)
∣∣∣, k ≤ K

)
.

2. If DS(1)
n

(h, h′) is large enough, then compute a match between h and h′, i.e. a
MoU estimate of R(h)−R(h′) based on the second sub-dataset:

ΦS(2)
n

(h, h′) =
2

B(B − 1)
median

( ∑
i,j∈B2

k
i<j

(
h(Xi, Xj)− t(Yi, Yj)

)2

−
(
h′(Xi, Xj)− t(Yi, Yj)

)2
, k ≤ K

)
.

If it is negative, i.e. h has a lower empirical risk on a majority of blocks, then
h wins the match. Otherwise, h′ is declared as the winner.

3. Gather all candidates that have won all the matches they have been allowed
to play, called champions. Finally, based on the third sub-dataset, compute a
MoU estimate of (h′ − h)(h− t) for every pair (h′, h) of champions:

ΨS(3)
n

(h′, h) =
2

B(B − 1)
median

( ∑
i,j∈B2

k
i<j

(
h′(Xi, Xj)− h(Xi, Xj)

)
·

(
h(Xi, Xj)− t(Yi, Yj)

)
, k ≤ K

)
.

The output of the procedure is a champion ĥ winning all its last round home
matches ΨS(3)

n
(h′, h) described above.

Figure 8.3 – Pairwise Tournament Procedure
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Definition 8.31. Let λQ(κ, η, h) and λM(κ, η, h) be defined as in Lugosi and Mendelson
(2016) (see Definitions 2.2 and 2.3 therein). The definitions of rE(κ, h) and r̄M(κ, h)
needs however to be adapter. Indeed, let

rE(κ, h) = inf

r : E sup
u∈Hh,r

∣∣∣∣∣∣∣
1√
bB/2c

bB/2c∑
i=1

σi u(Xi, XbB/2c+i)

∣∣∣∣∣∣∣ ≤ κ
√
bB/2cr

 ,

and

r̄M(κ, h) = inf

r : E sup
u∈Hh,r

∣∣∣∣∣∣ 1√
bB/2c

bB/2c∑
i=1

σi u(Xi, XbB/2c+i) · h(Xi, XbB/2c+i)

∣∣∣∣∣∣
≤ κ

√
bB/2cr2

.
Proof of the Oracle Distance. The goal of the oracle distance is to allow matches
between distant candidates only. This way, if h∗ is selected as one of the candidates, it
should win its match against a very different opponent. The fact that the MoU estimate
of the L1 distance between two candidates is a good approximate of their L2 distance
is guaranteed by the following proposition.

Proposition 8.32. There exist constant κ, η, l, c > 0 and 0 < α < 1 < β, all of
them depending only on L for which the following holds. For a fixed h∗ ∈ H, let d∗ =
max{λQ(κ, η, h∗), rE(κ, h∗)}. For any r ≥ d∗, with probability at least 1 − 2 exp(−cn),
for every h ∈ H, one has

• If DS(1)
n

(h, h∗) ≥ βr then β−1DS(1)
n

(h, h∗) ≤ ‖h− h∗‖L2 ≤ α−1DS(1)
n

(h, h∗).

• If DS(1)
n

(h, h∗) < βr then ‖h− h∗‖L2 ≤ (β/α)DS(1)
n

(h, h∗).

This proposition is an adaptation of Proposition 3.2 in Lugosi and Mendelson (2016),
which is itself a reproduction of Theorem 3.3 in Mendelson (2017). We sketch first the
adaptations of the lemmas used in Mendelson (2017).

Lemma 8.33. For every q > 2 and L ≥ 1, there are constants B and κ0 that depend
only on q and L for which the following holds. If ‖u‖Lq ≤ L‖u‖L2 and X1, . . . , XB are
independent copies of X, then

P

 2

B(B − 1)

∑
1≤i<j≤B

|u(Xi, Xj)| ≥ κ0‖u‖L2

 ≥ 0.9.

Proof. The proof is analogous to that of Lemma 3.4 in Mendelson (2017), except that
a version of the Berry-Esseen theorem for U -statistics (Callaert et al., 1978) is used
instead of the standard one.

Lemma 8.34. For every q > 2 and L ≥ 1, there is a constant κ1 that depends only on
q and L for which the following holds. If X1, . . . , XB are independent copies of X, then

P

 2

B(B − 1)

∑
1≤i<j≤B

|u(Xi, Xj)| ≤ κ1‖u‖L2

 ≥ 0.9.
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Proof. As
{

2
B(B−1)

∑
i<j |u(Xi, Xj)| ≥ κ1‖u‖L2

}
⊂
{
∃i < j, |u(Xi, Xj)| ≥ κ1‖u‖L2

}
,

Chebyshev inequality yields

P

 2

B(B − 1)

∑
1≤i<j≤B

|u(Xi, Xj)| ≥ κ1‖u‖L2

 ≤ B(B − 1)

2
P
{
|u(Xi, Xj)| ≥ κ1‖u‖L2

}
,

≤ B(B − 1)

2κ2
1

.

Since B only depends on q and L (see proof of Lemma 8.33), so does κ1.

Proof of Proposition 8.32. Using Lemma 8.33 and Lemma 8.34 with u = h − h∗,
together with the union bound, it holds that for every block Bk one has with probability
at least 0.8

κ0‖h− h∗‖L2 ≤ Ūk(|h− h∗|) ≤ κ1‖h− h∗‖L2 . (8.6)

Denoting by Ik the indicator of this event, and by Īk its complementary, we have
E[Īk] ≤ 0.2. Moreover,

P


K∑
k=1

Ik ≥ 0.7K

 = 1− P

 1

K

K∑
k=1

Īk ≥ 0.3

 .

When a MoU estimate is used, the Ik are independent, since built on disjoint blocks,
and the concentration of Binomial random variables allows to finish. But interestingly,
when a MoRU is used, it is straightforward to see that the last term is exactly the
same quantity as the one involved in MoU’s estimator concentration (Section 7.3.2).
The same method can thus be used since an upper bound of E[Īk] is already available.
Precisely, choosing τ = 0.25 < 0.3 and recalling B = bn/Kc, it holds

P

 1

K

K∑
k=1

Īk ≥ 0.3

 ≤ 2 exp
(
−2(0.05)2K

)
.

So the number of blocks which satisfy (8.6) is larger than 0.7K with probability at least
1− 2 exp(−c1K) for some positive constant c1. The rest of the proof is similar to that
of Proposition 3.2 in Lugosi and Mendelson (2016).

Proof of the First Round. As explained above, the goal of the first round is to
identify h∗, as it can be shown that it wins all its matches with high probability. It is
the purpose of the following proposition.

Proposition 8.35. Under the assumptions of Theorem 8.25, and using its notation,
with probability at least

1− 2 exp(−c0nmin{1, σ−2r2}),
∀ h ∈ H if ΦS(2)

n
(h, h∗) ≥ βr then h∗ defeats h. In particular h∗ ∈ Hchamp, and

∀ h ∈ Hchamp, ‖h− h∗‖L2 ≤ (β/α)r.

Proof of Proposition 8.35. This proof carefully follows that of Proposition 3.5 in
Lugosi and Mendelson (2016) (see Section 5.1 therein), so that only changes induced by
pairwise objectives are detailed here.
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Proof of pairwise Lemma 5.1 in Lugosi and Mendelson (2016). First, one may rewrite

Qh,h′ =
2

B(B − 1)

∑
i<j

(
h(Xi, Xj)− h′(Xi, Xj)

)2
,

Mh,h′ =
4

B(B − 1)

∑
i<j

(
h(Xi, Xj)− h′(Xi, Xj)

)
·
(
h′(Xi, Xj)− t(Yi, Yj)

)
,

Rk(u, t) =
∣∣∣{(i, j) ∈ B2

k : i < j, |u(Xi, Xj)| ≥ t}
∣∣∣ =

∑
i<j∈B2

k

1{|u(Xi, Xj) ≥ t|}.

Since pairs are not independent from each others, even if the Xi’s are, one cannot
use directly the proposed method. Instead, Hoeffding’s inequality for U -statistics gives
that the probability of each Rk(h− h′, κ0r) to be greater than B(B−1)ρ0

4 is greater than
1−exp(−Bρ2

0/4). For τ small enough, we still have that this probability is greater than
1− τ/12. Aggregating the Bernoulli may be done in two ways. If we deal with a MoU
estimate, the independence between the blocks leads to the same conclusion. If a MoRU
is used, the remark made for Proposition 8.32 is still valid, and one can conclude.

The next difficulty in proving pairwise Lemma 5.1 arises with the bounded differences
inequality for Ψ. If a MoU estimate is used, changing one sample X ′i only affects one
block, and generates a 1/K difference at most, exactly like with MoM, so that the
bound holds the same way. On the contrary, if a MoRU estimate is used, the replaced
sample may contaminate all K blocks. The analysis of the MoRU behavior in that case
is a bit trickier, and we restrict ourselves to MoU estimates for the matches.

The end of the proof uses symmetrization arguments. This kind of arguments still apply
to U -statistics after decoupling, see e.g. Arcones and Gine (1993); de la Peña (1992), or
p.140 of the monograph by de la Peña and Giné (1999). The analysis based on Lemma
A.1. in Clémençon et al. (2008), or the proof of Theorem 8.9 are examples of how to
use such arguments. So is the proof of pairwise Lemma 5.1 completed.

Proof of pairwise Lemma 5.2.

P

{∣∣∣∣ 2

B(B − 1)

∑
i<j

Ui,j − EU
∣∣∣∣ ≥ t

}
≤ 2
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E
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∑
i<j

Ui,j − EU

∣∣∣∣∣∣∣ ,

≤ 2

B(B − 1)t

√√√√√√E

∣∣∣∣∣∣∣
∑
i<j

Ui,j − EU

∣∣∣∣∣∣∣
2

,

≤ 2

B(B − 1)t

√ ∑
i<j, k<l

E[Ui,jUj,k]− (EU)2,

≤ 2

B(B − 1)t

√
B(B − 1)

2

(
E[U2]−

(
EU
)2)

+
B(B − 1)(B − 2)

2
σ2

1,

≤
√

2(B − 2)√
B(B − 1)t

‖U‖L2 ≤
√

2√
Bt
‖U‖L2 .

The rest of the proof is identical.

Other tools to prove Proposition 8.35 have already been adapted earlier in the section:
Binomial concentration, bounded differences inequality, symmetrization arguments.
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Proof of the Second Round. As explained in Proposition 8.35, the pool of champions
satisfies the L2 proximity to h∗. The second round next aims at exhibiting a candidate
with small excess risk. This is explicited in Proposition 8.36.

Proposition 8.36. Let Hchamp ⊂ H. Under the conditions of Theorem 8.30 and using
its notation, it holds with probability at least 1− 2 exp(−c0nmin{1, σ−2r2})
• h∗ wins all of its home matches, and

• if E
[
ΨS(3)

n
(h∗, h)

]
≤ −2r2

1 then h loses its home match against h∗.

Thus, on this event, the set of possible champions is nonempty (since it contains h∗), and
any other champion satisfies that E

[
ΨS(3)

n
(h∗, h)

]
≥ −2r2

1, and therefore by Lemma 8.37,

E

[(
ĥ(X,X ′)− t(Y, Y ′)

)2
]
≤ E

[(
h∗(X,X ′)− t(Y, Y ′)

)2
]

+ 4r2
1.

This is a direct adaptation of Proposition 3.8 in Lugosi and Mendelson (2016). The
main tools used are again symmetrization, contraction of a Bernoulli process. We simply
recall an adaptation of Lemma 3.6 therein, that links ΨS(3)

n
(h∗, h) to the excess risk.

Lemma 8.37. For γ > 0, if h ∈ H satisfies E
[
ΨS(3)

n
(h∗, h)

]
≥ −γt2, then

E

[(
ĥ(X,X ′)− t(Y, Y ′)

)2
]
≤ E

[(
h∗(X,X ′)− t(Y, Y ′)

)2
]

+ 2γt2.

Proof. Observe that(
h(X,X ′)− t(Y, Y ′)

)2
−
(
h∗(X,X ′)− t(Y, Y ′)

)2

=
(
h(X,X ′)− h∗(X,X ′)

)2
+ 2

(
h(X,X ′)− h∗(X,X ′)

)(
h∗(X,X ′)− t(Y, Y ′)

)
,

and that(
h(X,X ′)− h∗(X,X ′)

)(
h∗(X,X ′)− t(Y, Y ′)

)
= −

(
h(X,X ′)− h∗(X,X ′)

)2

−ΨS(3)
n

(h∗, h),

so that

E

[(
h(X,X ′)− t(Y, Y ′)

)2
]
−E

[(
h∗(X,X ′)− t(Y, Y ′)

)2
]
≤ −2E

[
ΨS(3)

n
(h∗, h)

]
≤ 2γt2.

Proof of Theorem 8.30. It is a direct application of Propositions 8.32, 8.35 and 8.36.

In the last section of this chapter, we display some numerical experiments showing the
benefit of using MoM estimates to perform learning.
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Figure 8.4 – Gradient Descents on normal (top) and contaminated (bottom) datasets.

8.6 Learning Experiments

As explained in Remark 8.27, the tournament winner’s computation is often nontrivial.
Unfortunately, the pairwise extension of the tournament does not escape this limitation.
However, the MoU gradient descent scheme described in Section 8.4 can be set up very
easily. Despite the slow convergence rates exhibited by the MoU minimizer, its strength
relies on the ability to deal with corrupted datasets. The experiment run is as follows.
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It illustrates a metric learning problem (see Section 6.2.2), where we try to learn from
points that are known to be close or not, a distance that fits them. The search space
is the set of all possible Mahalanobis distances, i.e. d(x, y) =

√
(x− y)>M(x− y), for

some positive definite matrix M . Thus, the optimal distance can be learned through
mini-batch gradient descent over the parameter M . The procedure has been run on
the iris dataset from scikit-learn (Pedregosa et al., 2011), that we have contaminated
with a small number of outliers, in the spirit of Lecué and Lerasle (2017). The gradient
descent convergences are depicted in Figure 8.4.

On the normal dataset (top), we can see that standard mini-batches perform well,
while MoU mini-batches (or MoCU as the complete U -statistics are computed) induce
a much slower convergence. This is expected as the median mini-batch is always selected,
that contains the most normal observations, and consequently the least informative or
discriminative.

Interestingly, the behavior is drastically different when the experiment is run on the
corrupted dataset (bottom). Indeed, although converging with the MoU mini-batches
remains slower than with the standard ones on the normal regime, they avoid peaks,
that are caused by the presence of one (or more) outlier in the mini-batch. The MoU
gradient descent automatically selects mini-batches that does not contain any outlier,
and converges slowly but surely.

This experiment is a typical example of the benefits induced by using MoM-based
algorithms in presence of outliers. Other examples on standard mean problems can be
found in Lecué and Lerasle (2017), while Figure 8.4 gives a perfect illustration of this
advantage in a pairwise learning framework.

8.7 Conclusion

In this chapter, we have seen how the MoM’s principle can be used to perform learning.
Minimizing a MoM estimate of risk, as described in Section 8.1, yields slow rates,
but comes with efficient algorithms such as the MoM gradient descents detailed in
Section 8.4. The main advantage of this method is its ability to deal with outliers.
Other approaches, such as the tournament procedures discussed in Section 8.5, have
also been analyzed, providing stronger guarantees even in heavy tailed scenarios. The
principal drawback is here the lack of efficient algorithmic resolution. All this methods
have been shown to adapt nicely to randomized and pairwise settings, opening the door
to robust ranking and robust metric learning, as illustrated in Section 8.6.

Another promising research direction is the use of such pairwise criteria to perform
robust representation learning. This can be an objective on its own, or part of a semi-
supervised framework, in the spirit of what is proposed in Section 3.2 of Brouard et al.
(2016b). One important question that remains to address is to link the Mo(R)M gradient
descent solution (i.e. the minimizer of the sum over all possible Mo(R)M criteria) to
the minimizer of one specific Mo(R)M criterion, for which we have guarantees. Finally,
several MoM-based methods such as Le Cam’s approach (Lecué and Lerasle, 2019)
or MoM minmax estimators (Lecué and Lerasle, 2017) remain to be extended to the
U -statistics setting. This would widen the theoretically sounded and algorithmically
efficient learning approaches to tackle the robust pairwise learning problem.
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In the previous chapter, we have discussed how to design learning procedures that
behave well in presence of heavy-tailed data. However, the few abnormal data points
were completely part of the distribution, that was assumed to remain unchanged between
the train and the test phases. The goal was simply not to be too much influenced by
them. The problematic addressed here is totally different, although as frequent in
practice as the previous one. It consists in assuming that the data available in the
training stage are not sampled from the test distribution. This phenomenon occurs, for
instance, as soon as the data is collected from different strata of one population. In this
chapter, we thus develop a theoretically grounded approach to perform debiased ERM.
It is supported by strong guarantees and a simple practical implementation.

In Section 9.1, we first motivate this analysis by highlighting its importance in today’s
machine learning. We also emphasize on its generality, as opposed to covariate shift in
particular. The formal probabilistic framework needed is detailed in Section 9.2, while
the debiasing procedure we propose, together with its practical implementation, are
discussed in Section 9.3. Finally, guarantees about debiased ERM, stated in terms of
excess risk, are proved in Section 9.4, and numerical experiments exposed in Section 9.5.
This chapter covers the works exposed in the following preprint:

I P. Laforgue, S. Clémençon. Statistical learning from biased training samples. arXiv
preprint arXiv:1906.12304, 2019.
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9.1 Introduction

Recall first the standard setting of binary classification. The random pair Z = (X,Y ) is
defined on a probability space with unknown joint probability distribution P , referred
to as the test distribution. The random vector X, valued in X ⊂ Rd, models some
information supposedly useful to predict the random binary label Y , taking its values
in {−1,+1}. The objective is to build, from the training dataset Sn = {Z1, . . . , Zn},
composed of n ≥ 1 independent copies of (X,Y ), a Borelian predictive function, i.e. a
classifier g : X → {−1,+1} that minimizes the error probability of the decision

LP (g) = P{Y 6= g(X)}.

This corresponds to the risk of the classifier g, R(g), with the particular choice of loss
function `(g, Z) = 1{g(X) 6= Y }. Empirical Risk Minimization (ERM in short, see e.g.
Devroye et al. (1996a)) consists in solving instead the minimization problem

min
g∈G

L̂n(g) =
1

n

n∑
i=1

`(g, Zi) =
1

n

n∑
i=1

1{g(Xi) 6= Yi}.

One can see L̂n(g) as a statistical estimator of the risk LP (g), obtained by replacing
P in LP with the empirical distribution of the (Xi, Yi)’s: P̃n = (1/n)

∑n
i=1 δZi . The

performance of empirical risk minimizers ĝn (i.e. solutions to the ERM problem) is
usually measured in terms of excess risk LP (ĝn)−L∗P . It has been studied under different
assumptions on G’s complexity (e.g. finite VC dimension, Rademacher averages), by
means of concentration inequalities for empirical processes, see Boucheron et al. (2013,
2005). However, this approach naturally relies on the assumption that training data
are distributed as the test ones, which is often unrealistic in practice.

Motivated by the poor control of the data acquisition process in many applications
(see e.g. van Miltenburg (2016)), the purpose of the present chapter is therefore to
investigate ERM in presence of sample selection bias. That is to say in the situation
where the samples at disposal for learning a predictive rule g are not distributed as P .
This can be viewed as a very specific case of Transfer Learning, see Ben-David et al.
(2010); Liu et al. (2016). As recently highlighted by Bolukbasi et al. (2016), Zhao
et al. (2017) or Burns et al. (2018) among others, representativeness issues do not
vanish simply under the effect of the size of the training set. Thus, ignoring selection
bias issues may dramatically jeopardize the outputs of machine-learning algorithms,
referring to accuracy concerns of course, but also to ethical considerations.

Selection bias can be due to a wide variety of causes, such as the use of a survey scheme
to collect observations, censorship, or truncation (see Heckman (1990) or Vella (1998)
for instance). The study of its impact on inference methods, as well as techniques to
remedy it, have a very long history in Statistics (Heckman, 1979). Depending on the
nature of the mechanism causing the sample selection bias – and on that of the statistical
information available for learning the decision rule – special cases have been considered
in the machine learning literature, for which dedicated approaches have been developed.
For instance, the case where some errors occur among the labels of the training data
is studied in Lugosi (1992). Extending ERM to the framework of survey training data
(when inclusion probabilities are known) is done in Papa et al. (2016), while statistical
learning of regression models in the context of right censored training observations is
considered in van Belle et al. (2011) and Ausset et al. (2019).



CHAPTER 9. LEARNING FROM BIASED TRAINING SAMPLES 167

Most of these methods boil down to weighting the training observations with appropriate
weights, either based on the Importance Sampling approach, or the Inverse Probability
Weighting technique (IPW in abbreviated form, see e.g. Dubin and Rivers (1989) or
Winship and Mare (1992) in the context of linear regression models). For instance, these
weights are the inverses of the first order inclusion probabilities in the case where data
are acquired by means of a survey plan, cf Clémençon et al. (2017), and they correspond
to estimates of the probability of not being censored in the context of censored data
(Ausset et al. (2019) and the references therein). In general, side information about the
cause of the selection bias is crucially used to derive explicit forms for the appropriate
weights from the observations available (Zadrozny, 2004). Refer also to Rosset et al.
(2005) for a study in a semi-supervised framework, to Dudík et al. (2006) for maximum
entropy density estimation, or to Lin et al. (2002) for the adaptation of the SVM
algorithm to certain bias selection situations.

Recently, a very special case of sample selection bias, referred to as covariate shift, has
been the subject of a good deal of attention (though it had been already considered by
Manski and Lerman (1977) in a simplified version). In this case, the sample selection
bias issue is simplified by the hypothesis stipulating that, in supervised problems, only
the marginal input distribution may possibly change, the conditional distribution of the
output Y given the input X being the same in the learning and predictive stages. One
may refer to the rich literature: Shimodaira (2000), Sugiyama and Müller (2005), Huang
et al. (2007), or Quionero-Candela et al. (2009) and Sugiyama and Kawanabe (2012).
However, in many practical situations, the covariate-shift assumption is not fulfilled.
The selection bias mechanism at stake is then way too complex to derive explicit forms
for the appropriate weights that would permit to mimic the target distribution P .

In opposition to the aforementioned approaches, the framework we develop here allows
to tackle problems where the biasing mechanism at work is very general, provided that
certain identifiability hypotheses are satisfied. Precisely, focus is here on the case where
statistical learning is based on training data sampled from general selection bias models,
as originally introduced in Vardi (1985) and Gill et al. (1988) in a context of asymptotic
nonparametric estimation of cumulative distribution functions. This very general biased
sampling framework accounts for many situations encountered in practice. It covers for
instance the (far from uncommon) situation where the samples available are sampled
from conditional distributions of (X,Y ) given that X lies in specific subsets of the input
space X (assuming that the union of these subsets is equal to X’s support). In this
general setting, we thus extend ERM to the case of biased training data.

Attention should be paid to the fact that this framework completely encompasses the
covariate shift scenario. It can by no means be systematically reduced to a reweighting
problem where weights can be straightforwardly deduced (or estimated) from the data.
Instead, we propose to build an unbiased empirical estimate of the test distribution by
solving a generally nontrivial system of equations. From the solution is then computed
a “nearly unbiased” risk estimate. We further establish a tail probability bound for the
maximal deviations between the true risk functional and the estimate thus constructed.
Based on this result, we prove that minimizers of the “debiased empirical risk” achieve
learning rate bounds that are of the same order as those attained by empirical risk
minimizers in absence of any bias mechanism. To our knowledge, this is the first time
such guarantees are derived for ERM minimizers in such a general framework. We also
present results from various numerical experiments, based on synthetic and real data,
that provide strong empirical evidence of the relevance of the approach we propose.
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We emphasize that, whereas the vast majority of machine-learning techniques dealing
with biased data documented in the literature are ad-hoc and seldom supported by a
sound theory, the present chapter essentially focuses on generalization issues. If the fact
that the biasing functions are known can be seen at first glance as a limitation of the
framework developed, one should have in mind that absolutely no learning strategy with
statistical guarantees can be designed in absence of any understanding of the biasing
mechanism. Furthermore, it is actually far from uncommon in practice that the latter
is known (e.g. one may know the types of images that are more easily collected or the
profiles of individuals who most likely answer a questionnaire). However, the situation
where the biasing mechanism is only approximately known is of considerable interest in
practice, and investigating to which extent the statistical guarantees established in this
chapter are preserved will be the subject of further research.

9.2 Background and Preliminaries

As a first go, we precisely describe the probabilistic framework for ERM based on biased
training data we consider. We then briefly recall the rationale behind the approach to
nonparametric estimation in biased sampling models developed in Vardi (1985). The
subsequent analysis indeed relies partly on this methodology. Here and throughout, we
denote by buc the integer part of any real number u, by δa the Dirac mass at any point
a, and by ||U ||∞ the essential supremum of any real-valued random variable U .

9.2.1 The Probabilistic Framework

Let Z be a random vector, taking its values in Z ⊂ Rq, q ≥ 1, with unknown distribution
P (dz), and Θ a decision space. Consider a certain loss function ` : Rq ×Θ→ R+, that
is P -integrable for any decision rule θ ∈ Θ. Given this theoretical framework, we are
interested in solving the risk minimization problem

min
θ∈Θ

LP (θ), (9.1)

where LP : θ ∈ Θ 7→ EP [`(Z, θ)] ∈ R+ is the risk function. In the biased sampling
situation we consider here, we cannot rely on the observation of independent copies
Z1, . . . , Zn of Z. Statistical learning must be based instead on the observation of
K ≥ 1 independent biased i.i.d. samples Sk = {Zk,1, . . . , Zk,nk} of size nk ≥ 1. We
denote by n = n1+. . .+nK the size of the pooled sample, and assume that the following
classic condition in the multiple samples setting (e.g. van der Vaart (1998)) holds true.

Assumption 9.1. There exist C < +∞, λmin, λ > 0, and (λ1, . . . , λK) ∈ [λmin, 1[K ,
with

∑
k λk = 1, such that, for all k ≤ K, and for all n ∈ N∗ it holds∣∣∣λk − nk/n∣∣∣ ≤ C/√n and λ ≤ nk/n. (9.2)

Remark 9.2. We point out that, in the situation where the vector of sample sizes
(n1, . . . , nK) is random, distributed as a multinomial of size n and with parameters
(λ1, . . . , λk), the bounds (9.2) simultaneously hold true for an appropriate constant
C with overwhelming probability. Using Hoeffding’s inequality (see Hoeffding (1963))
combined with the union bound for instance, one obtains that, for any δ ∈]0, 1[, all these
conditions are fulfilled with probability larger than 1 − δ with C =

√
log(K/δ)/2, and

that λ ≤ mink λk − C/
√
n, provided that n > C2/mink λk. For simplicity, we restrict
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the subsequent analysis to the situation where the sample sizes are deterministic, the
straightforward extension to the random case being left to the reader.

We suppose now that each distribution Pk of the Zk,i’s, k ≤ K, is absolutely continuous
with respect to the distribution P , and assume that it is related to it through a known
biasing function ωk:

∀z ∈ Z, dPk
dP

(z) =
ωk(z)

Ωk
,

where Ωk = EP [ωk(Z)] =
∫
Z ωk(z)P (dz). Notice that, just like P , the Ωk’s are

unknown. This very general framework includes a wide variety of situations encountered
in practice, as illustrated by the following examples.

Example 9.3. We place ourselves in the context of binary classification: Z = (X,Y ),
Z = X × {−1, +1}, q = d + 1, Θ = G, and `(Z, g) = 1{Y 6= g(X)}. Consider K ≥ 1
subsets X1, . . . , XK of the input space X , such that µ(Xk) > 0 for all k ∈ {1, . . . , K},
µ denoting X’s marginal distribution. The case where only labeled examples with input
observations in Xk can be collected to form sample Sk, k ≤ K, corresponds to the
situation where ωk(Z) = 1{X ∈ Xk}. In this particular case, Pk is (X,Y )’s conditional
distribution given X ∈ Xk.

Example 9.4. Consider the distribution-free regression framework, where T is a bounded
random duration (i.e. a nonnegative random variable such that ||T ||∞ < +∞), and
X is a random vector valued in X ⊂ Rd, defined on the same probability space, and
supposedly useful to predict T . The goal is to learn a regression function f : X → R in
a class F of bounded functions with minimum quadratic risk. In this case, Z = (X,T ),
Z = X × R+, q = d + 1, Θ = F , and `(Z, f) = (T − f(X))2. Let K ≥ 1, and
0 < τ1 < . . . < τK−1 < τK = ||T ||∞. Consider the case where, for k ≤ K, the sample Sk
is formed of censored observations with a deterministic right censorship, i.e. of copies of
the pair (X,min{T, τk}). This corresponds to the situation where ωk(Z) = 1{T ≤ τk},
and Pk is the conditional distribution of (X,T ) given T ≤ τk.

The following technical assumptions are required in the rate bound analysis carried out
in the next section. These hypotheses permit to build a nearly unbiased estimator P̂n
of P from the biased samples Sk and the biasing functions ωk.

Assumption 9.5. The union of the supports of the biased distributions Pk is equal to
Supp(P ), the support of distribution P :

Supp(P ) =

K⋃
k=1

{
z ∈ Z : ωk(z) > 0

}
.

If Assumption 9.5 is not fulfilled, there is of course absolutely no hope to estimate P
on its full support, since no points from Supp(P )\⋃K

k=1{z ∈ Z : ωk(z) > 0} can be
sampled. At best, one may thus be able to estimate P+ = P ( · | ∑k ωk > 0).

The next assumption needed states as a graph connectivity condition. Let κ > 0, and
Gκ = (V,A) the (undirected) graph with vertices in V = {1, . . . , K}, and adjacency
matrix A = (ak,l)1≤k 6=l≤K defined by ak,l = 1{EP [ωk(Z)ωl(Z)] ≥ κ}, i.e. vertices k and
l are connected if and only if EP [ωk(Z)ωl(Z)] ≥ κ.

Assumption 9.6. The graph Gκ is connected.



CHAPTER 9. LEARNING FROM BIASED TRAINING SAMPLES 170

From an algebraic point of view, one may classically check whether Assumption 9.6
is fulfilled or not by means of a breadth-first search algorithm, or by examining the
spectrum of the Laplacian matrix of Gκ for instance (see e.g. Godsil and Royle (2001)).

Assumption 9.7. Let ξ > 0. For all k ∈ {1, . . . , K}, Ωk ≥ ξ.

Notice that, contrary to Gill et al. (1988), Assumptions 9.6 and 9.7 involve explicit
lower bounds κ and ξ. Indeed, the subsequent analysis is nonasymptotic, and we need
to rely on explicit parameters, as we cannot ensure the positiveness requirements by
simply letting n tend to infinity. It is also the purpose of the following assumption to
provide constants on which that of Theorem 9.17 are built.

Assumption 9.8. ∃ m,M > 0, m ≤ inf
z

max
k≤K

ωk(z) and sup
z

max
k≤K

ωk(z) ≤M .

Remark 9.9. We point out that, in Example 9.3, Assumption 9.5 simply means that
X = X1 ∪ · · · ∪ XK , and Assumption 9.7 that µ(Xk) ≥ ξ for all k ∈ {1, . . . , K}.
Assumption 9.8 is always fulfilled with m = M = 1, and Assumption 9.6 can be checked
in a simple manner, insofar as we have: ∀1 ≤ k 6= l ≤ K,

ek,l = +1⇔ µ
(
Xk ∩ Xl

)
≥ κ.

In Example 9.4, Assumption 9.5 is always fulfilled by construction, as Assumption 9.8
with m = M = 1. Assumption 9.7 means that P{T ≤ τ1} ≥ ξ, whereas Assumption 9.6
is always true for any κ ≤ ξ.

We are now equipped to construct an unbiased estimate L̂n of LP , based only on the
biased training samples Sk, k ≤ K.

9.2.2 Building an Empirical Error Estimate

The goal pursued here is to build an estimator of the unknown risk LP based on the
K independent biased samples S1, . . . , SK . The risk estimation procedure we consider
follows in the footsteps of the cumulative density function estimation technique in biased
models introduced in the seminal contribution of Vardi (1985) (which, incidentally, can
be interpreted as nonparametric maximum likelihood estimation). Ignoring the bias
selection issue, one may compute the empirical distribution based on the whole pooled
sample

P̃n =
1

n

K∑
k=1

nk∑
i=1

δZk,i =
K∑
k=1

(nk/n)P̂k, (9.3)

where P̂k = (1/nk)
∑

i≤nk δZk,i is the empirical distribution based on (biased) sample
Sk, k ≤ K. This discrete random measure is a natural estimator of the linear convex
combination of the Pk’s given by P̄ =

∑
k λkPk, which is absolutely continuous with

respect to P , and whose density can be written as

dP̄

dP
(z) =

K∑
k=1

λk
Ωk
ωk(z).

Under Assumption 9.5, it is strictly positive on the whole support of Z, so it holds:

P (dz) =

 K∑
k=1

λk
Ωk
ωk(z)

−1

· P̄ (dz). (9.4)
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Hence, if estimates Ω̂k of the unknown expectations EP [ωk(Z)] were at our disposal,
one could immediately form a plug-in estimator of P by replacing P̄ and the Ωk’s in
Equation (9.4) with their statistical versions, namely P̃n and the Ω̂k’s:

P̂n(dz) =

 K∑
k=1

nk

nΩ̂k

ωk(z)

−1

· P̃n(dz).

In order to estimate the vector Ω = (Ω1, . . . , ΩK), observe that it straightforwardly
follows from Equation (9.4) that it is solution to the system of equations

1 = (Γ1(W ), . . . , ΓK(W )), (9.5)

where 1 denotes the K-dimensional vector with all components equal to 1 and, for any
k ≤ K and all W = (W1, . . . , WK) ∈ (R∗+)K ,

Γk(W ) =
1

Wk

∫
z∈Z

ωk(z)∑K
l=1(λl/Wl)ωl(z)

P̄ (dz). (9.6)

A natural (M -estimation) method to recover Ω approximately then consists in solving
a statistical version of the system above

1 =
(

Γ̂1(W ), . . . , Γ̂K(W )
)
, (9.7)

the Γ̂l(W )’s being built by replacing λl and P̄ in Equation (9.6) by nl/n and P̃n
respectively. In addition, since the Γ̂k(W )’s are homogeneous of degree 0 (just like
the Γk(W )’s), observe that one may build an estimator of P from any solution W of
System (9.7) by considering

P̂n =
K∑
k=1

nk∑
i=1


(∑K

l=1(nl/(nWl))ωl(Zk,i)
)−1

∑K
m=1

∑nm
j=1

(∑K
l=1(nl/(nWl))ωl(Zm,j)

)−1

 δZk,i . (9.8)

Under a slightly weaker version of Assumption 9.6, this inference technique has been
investigated from an asymptotic perspective in the context of cumulative distribution
function estimation in Gill et al. (1988).

9.3 The Debiased ERM Procedure

We now describe the ERM approach based on biased training samples we promote. It is
reproduced from Laforgue and Clémençon (2019), as all results exposed hereafter. The
complete procedure is summarized in Section 9.3.1, while the resolution of System (9.7)
is discussed in Sections 9.3.2 and 9.3.3.

9.3.1 The Complete Procedure

The procedure mainly consists in replacing P in LP with P̂n as defined in Equation (9.8),
rather than with P̃n = (1/n)

∑n
i=1 δZi . Indeed, the latter is an estimate of the biased

distribution P̄ =
∑

k λkPk, while the first one really estimates P . As highlighted by
Equation (9.8), this incidentally boils down to reweight the datapoints. The ERM
variant we propose in the context of biased training data is summarized in Figure 9.1,
and can be implemented in three steps as follows:
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ERM Based on Biased Training Samples

• Input. Samples Sk = {Zk,i, i ≤ nk} and biasing functions ωk, k ≤ K.

• Debiasing the raw empirical distribution. Form the raw distribution
based on the pooled sample

P̃n =
1

n

K∑
k=1

nk∑
i=1

δZk,i ,

(i) compute the functions given by: ∀W ∈ (R∗+)K ,

Γ̂k(W ) =
1

Wk

∫
z∈Z

ωk(z)∑K
l=1((nl/n)/Wl)ωl(z)

P̃n(dz) for k ≤ K

(ii) solve System (9.7), producing a solution Ŵ in (R∗+)K such that ŴK,n = 1

(iii) for k ≤ K and for i ≤ nk, compute the weights

πk,i =

(∑K
l=1(nl/(nŴl))ωl(Zk,i)

)−1

∑K
m=1

∑nm
j=1

(∑K
l=1(nl/(nŴl))ωl(Zm,j)

)−1 ,

and form the “debiased” distribution estimate P̂n =
∑K

k=1

∑nk
i=1 πk,iδZk,i .

• ERM. Solve the ERM problem minθ∈Θ L̂n(θ), to produce the solution θ̂n, with
L̂n(θ) given by

L̂n(θ) := LP̂n(θ) =
K∑
k=1

nk∑
i=1

πk,i`(Zk,i, θ), (9.9)

Figure 9.1 – Debiased ERM Procedure

1. Estimates of the Γk’s functions are first computed from the pooled empirical
distribution P̃n (see Equation (9.3)) in order to form System (9.7).

2. The latter is next solved to build the estimate P̂n (see Equation (9.8)) of P .

3. The decision rule is finally obtained by replacing P by its estimate P̂n in the risk
minimization Problem (9.1) and solving it.

Discussing how to minimize the “nearly debiased” empirical risk in Equation (9.9) (or
a smooth/penalized version of it) in practice is beyond the scope of the present paper.
However, as discussed in Remark 9.10, one may straightforwardly combine any popular
ERM-like learning algorithm with the generic algorithmic approach described above.
Before investigating the resolution of System (9.7), a few remarks are in order.
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Remark 9.10. We highlight here that the debiasing procedure exposed in this subsection
is by no means computationally expensive. Indeed, the sole difference with standard
methods lies in the computation of the weights πk,i involved in the risk functional. In
addition, it can be readily implemented in a plug-in manner with most machine-learning
libraries, using e.g. the sample_weight option during the learning stage of scikit-learn’s
(Pedregosa et al., 2011) predictors.

Remark 9.11. From a practical point of view, rather than modifying the objective
function using the weights computed at step (iii) in Figure 9.1, one may alternatively
sample from distribution in Equation (9.8) given the original data to generate training
observations feeding next an untouched version of the learning algorithm.

We shall now focus on the resolution of System (9.7).

9.3.2 Solving System (9.7)

The resolution of System (9.7) is central in our method. Indeed, this nontrivial step
(see Section 9.3.3) is what makes our reweighting so general. While Inverse Probability
Weighting involves simple weights that can be deduced by common sense, the generality
of the biasing model studied here necessitates this complex resolution. Hopefully, as
shall be seen in this section, the solutions may be approximately computed easily.

Our first focus is on the number of solutions to System (9.7) (possibly none). Indeed,
System (9.7) is an empirical estimate of the ideal System (9.5), and the latter has been
shown in Gill et al. (1988) to have a unique solution under Assumption 9.6, up to the
homogeneity property.

Lemma 9.12. (Gill et al. (1988), Proposition 1.1 therein) Grant Assumption 9.6.
Then, System (9.5) has a unique solution W ∗ = (W ∗1 , . . . , W

∗
K) such that W ∗K = 1.

The following result now reveals that the empirical System (9.7) has also a unique, up
to the homogeneity property, solution with overwhelming probability.

Proposition 9.13. Grant Assumptions 9.1, 9.6 and 9.8. Then, there exists a constant
c0 > 0, depending only on κ, λ and M , such that System (9.7) admits a unique solution
Ŵn = (Ŵn,1, . . . , Ŵn,K) such that Ŵn,K = 1 with probability at least 1−K2e−c0n.

Proof. Define the directed graph G̃n with vertices {1, . . . , K} and link k → l if and
only if∫

1{ωk > 0}(z)P̂l(dz) > 0, or equivalently iff Ωl

∫
ωk(z)P̂l(dz) > 0. (9.10)

The graph G̃n is said to be strongly connected when, for any pair of vertices (k, l), there
exist a directed path from k to l, and a directed path from l to k. It is proved in Vardi
(1985) (see also Theorem 1.1 in Gill et al. (1988)) that this is a necessary and sufficient
condition for System (9.7) to have a unique solution (up to the homogeneity property).

Lemma 9.14. (Gill et al. (1988), Theorem 1.1) System (9.7) has a unique solution
such that Ŵn,K = 1 if and only if G̃n is strongly connected.



CHAPTER 9. LEARNING FROM BIASED TRAINING SAMPLES 174

From an asymptotic perspective, a direct application of the strong law of large numbers
ensures that, under Assumption 9.6, the strong connectivity property is fulfilled for n
large enough with probability one (cf Corollary 1.1 in Vardi (1985)). The rest of the
proof is dedicated to a nonasymptotic analysis of the phenomenon.

Let nE be the number of edges in Gκ. By definition nE ≤ K(K−1)/2. Now let k, l ≤ K
be a pair linked in Gκ. By definition EP [ωk(Z)ωl(Z)] ≥ κ. Since 0 ≤ ωk(z) ≤M for all
k and all z, Hoeffding’s inequality yields that for any t > 0,

P

{
Ωk

∫
ωk(z)P̂l(dz)− EP [ωk(z)ωl(z)] ≤ −t

}
≤ exp

(
−2nlt

2

M2

)
≤ exp

(
−2λnt2

M2

)
,

P

{
Ωl

∫
ωl(z)P̂k(dz)− EP [ωk(z)ωl(z)] ≤ −t

}
≤ exp

(
−2nkt

2

M2

)
≤ exp

(
−2λnt2

M2

)
.

Choosing t = κ > 0, the union bound gives that it holds with probability at least
1−2e−2λκ2n/M2 both at the same time k → l, and l→ k in G̃n. Proceeding analogously
for every pair connected in Gκ, we get that with probability at least 1−2nEe

−2λκ2n/M2

all pairs connected in Gκ are connected both ways in G̃n. Since Gκ is assumed to be
connected, this implies that G̃n is strongly connected. Noticing that nE ≤ K2/2 and
setting c0 = 2λκ2/M2, the proof is finished by applying Lemma 9.14.

Now that the solution to System (9.7) is proven to be unique with high probability,
we shall give some details about the resolution procedure. It directly derives from the
writing of the Γ̂k. Indeed, it holds for all k ≤ K:

λ̂kΓ̂k(W ) =

∫ λ̂kωk
Wk∑K
l=1

λ̂lωl
Wl

dP̃n =

∫
eukωk∑K
l=1 e

ulωl
dP̃n =

∂

∂uk

∫
log

 K∑
k=1

eukωk

 dP̃n,
with the change of variable eu = λ̂/W . Hence, finding W such that for all k ≤ K it
holds Γ̂k(W ) = 1, or equivalently λ̂kΓ̂k(W ) = λ̂k, is equivalent to solving

∇u

∫ log

 K∑
k=1

eukωk

 dP̃n − λ̂>u
 = 0.

The function inside the gradient operator is actually convex, and can be shown to be
strongly convex, hence the uniqueness of the solution (see Gill et al. (1988)). Solving
System (9.7) is thus equivalent to rooting the gradient of a (strongly) convex function.
This can be easily tackled by means of any Gradient Descent or Robbins-Monro scheme
(Robbins and Monro, 1951). Before investigating a simple instance of System (9.7) that
demonstrates the need for a gradient descent-based resolution, the following remark
focuses on the difficulty to check G̃n’s connectivity, and the alternatives prescribed.

Remark 9.15. The strong connectivity of G̃n might be arduous to check, compared
to computing the system’s solution. Thus, one is rather encouraged to compute the
debiasing weights without prior verification. If the graph happens not to be connected,
the minimized function is simply convex, and solutions are not unique, but still exist.
In this case, one of them will be found by the algorithm and one proceeds just like in the
strongly convex scenario. Otherwise, a simple criterion such as the norm of the gradient
suffices to alert on the non-convergence, and other bias functions should be chosen, or
debiased ERM abandoned and replaced by standard ERM.
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9.3.3 Analysis of Simple Systems

The subsequent analysis highlights the difficulty to solve System (9.7) as long as more
than one biased sample is involved, even in simplistic settings. This general remark
makes the resolution by gradient descent as explained in Section 9.3.2 necessary. It also
highlights that the price to pay for the generality of the biasing model considered is that
complex systems with nontrivial solutions arise, that must be solved approximately.

For instance, consider the binary classification framework: Z = (X,Y ), Z = X ×
{−1, +1}, q = d + 1, Θ = G, and `(Z, g) = 1{Y 6= g(X)}. The distribution P of the
random pair (X,Y ) can be either described by X’s marginal distribution µ(dx) and
the posterior probability η(X) = P{Y = +1 | X = x} or else by the triplet (p, F+, F−)
where p = P

{
Y = +1

}
and Fσ(dx) is X’s conditional distribution given Y = σ1, with

σ ∈ {−,+}.
Consider first the simple case where only one biased training sample S1 generated by
the biased distribution P1 is at disposal. Suppose furthermore that P1 is identical to
P , but with a different value p1 (i.e. F+ and F− remain unchanged). This corresponds
to the following biasing function:

ω1(z) =
dP1

dP
(z) =

p1

p
1{y = +1}+

1− p1

1− p 1{y = −1}.

Since there is only one training dataset, System (9.7) boils down to one single equation,
that admits 1 as a solution, and the debiasing weights πk,i = π1,i = πi then writes

πi =
ω1(zi)

−1∑n
j=1 ω1(zj)−1

=
1

C

(
p

p1
1{yi = +1}+

1− p
1− p1

1{yi = −1}
)
,

with C the normalizing constant such that the sum of the weights is equal to 1. This is
precisely the debiasing weights one would have intuitively expected, and going through
the whole debiasing procedure may appear as an excessive tool to compute them.

However, even in this very basic setting, considering more than 1 sample makes the
problem considerably more complex. Consider now two biased training samples, biased
as in the previous case, with two different p1 and p2. Assume in addition that they have
the same number of observations. System (9.7) then writes

1 = 2λ+

p1
pW1

p1
pW1

+
p2
pW2

+ 2λ−

1−p1
(1−p)W1

1−p1
(1−p)W1

+
1−p2

(1−p)W2

,

1 = 2λ+

p2
pW2

p1
pW1

+
p2
pW2

+ 2λ−

1−p2
(1−p)W2

1−p1
(1−p)W1

+
1−p2

(1−p)W2

,

where λ+ and λ− are the proportions of positive (respectively negative) labels in the
pooled sample. After setting W1 to 1, and replacing W2 by W for notation purposes,
it simplifies to:

1 = 2λ+
p1

p1 + p2

W

+ 2λ−
1− p1

1− p1 + 1−p2

W

,

(
p2 + p1W

) (
1− p2 + (1− p1)W

)
= 2λ+p1W

(
1− p2 + (1− p1)W

)
+ 2λ−(1− p1)W (p2 + p1W ),

W 2 + (2λ+ − 1)

(
1− p2

1− p1
− p2

p1

)
W +

p2(1− p2)

p1(1− p1)
= 0,
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that does not admit any trivial analytical solution. It is still easy to compute (recall
that p1 and p2 are assumed to be known), but obviously it is not a common sense
solution. If no simple solution is available in such very simple cases, the computational
resolution of System (9.7) seems to be an inevitable step in the general setting, and the
GD approach advocated in Section 9.3.2 the only viable option.

Now that the debiased ERM procedure has been thoroughly discussed, the next section
establishes the theoretical guarantees carried by the debiased risk minimizers computed.

9.4 Theoretical Guarantees

We now investigate the performance of minimizers of the “debiased” risk estimate of
Equation (9.9). The principal results are stated in Section 9.4.1, while intermediate
propositions used to derive the main theorem are detailed in Section 9.4.2.

9.4.1 Main Results

We start by a technical assumption needed for the statement of our theorem, see e.g.
van der Vaart and Wellner (1996).

Assumption 9.16. The collection of functions F = {`(·, θ) : θ ∈ Θ} is a uniform
Donsker class (relative to L1) with polynomial uniform covering numbers, i.e. there
exist constants C0 > 0 and r ≥ 1 such that: ∀ζ > 0,

sup
Q
N
(
ζ, F , L1(Q)

)
≤ C0(1/ζ)r,

where the supremum is taken over the set of all probability measures Q on Z, and with
N
(
ζ, F , L1(Q)

)
the number of L1(Q) balls of radius ζ > 0 needed to cover class F .

This hypothesis is a classical complexity assumption. Notice that the subsequent rate
bound analysis can be straightforwardly extended to settings involving other complexity
conditions (e.g. finite VC dimension, Rademacher averages). For instance, in the binary
classification example, recall that if the collection of classifiers G considered is of finite
VC dimension V < +∞, then the collection of functions {(x, y) ∈ X × {−1, +1} 7→
1{Y 6= g(X)}, g ∈ G} satisfies Assumption 9.16 with r = 2(V−1) andK0V (4e)V ≤ C0,
where K0 is a universal constant (Theorem 2.6.4 in van der Vaart and Wellner (1996)).

The result stated below now provides a tail bound for the maximal deviations between
the risk estimator of Equation (9.9) and the true risk.

Theorem 9.17. Grant Assumptions 9.1, 9.5 to 9.8 and 9.16. Then there exist constants
c0, C

′′
1 , C

′′
2 , C

′′
3 > 0 such that for any δ ∈]0, 1−K2e−c0n[ it holds with probability at least

1−K2e−c0n − δ:

sup
θ∈Θ

∣∣∣L̂n(θ)− L(θ)
∣∣∣ ≤ √K

C ′′1
√√√√ 1

n
log

(
16C0K3nr/2

δ

)
+
C ′′2K√
n

+
C ′′3√
n
.

The proof of Theorem 9.17 is given by several intermediate results further detailed
in Section 9.4.2. The bound stated below for the excess of risk of rules obtained by
minimization of Equation (9.9) immediately results from the standard bound

L(θ̂n)− inf
θ∈Θ

L(θ) ≤ 2 sup
θ∈Θ

∣∣∣L̂n(θ)− L(θ)
∣∣∣ ,
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combined with Theorem 9.17. Remarkably, it reveals that minimizers of the “debiased”
version of the empirical risk achieve exactly the same learning rate as minimizers of the
(unbiased) empirical risk based on n ≥ 1 independent observations Z1, . . . , Zn drawn
from the test distribution P .

Corollary 9.18. Suppose that the hypotheses of Theorem 9.17 are fulfilled. Let θ̂n be
any minimizer of Equation (9.9). Then, for any δ ∈]0, 1[, it holds with probability at
least 1− δ: ∀n ≥ 1,

L(θ̂n)− inf
θ∈Θ

L(θ) ≤ 2
√
K

C ′′1
√√√√ 1

n
log

(
32C0K3nr/2

δ

)
+
C ′′2K√
n

+
C ′′3√
n
,

as soon as n ≥ log(2K2/δ)/c0, where c0, C
′′
1 , C

′′
2 , C

′′
3 are the same as in Theorem 9.17.

The next section now focuses on intermediate results needed to derive Theorem 9.17.

9.4.2 Intermediate Results

Here we give the proof of Theorem 9.17. It is done through the succession of intermediate
results, stated as lemmas and propositions. The first step, addressed in Section 9.3.2,
(Proposition 9.13 therein) consists in proving that, like the “ideal” System (9.5), the
empirical System (9.7) has a unique solution with overwhelming probability (up to the
homogeneity property). On this event, one can then study the deviation of the (unique)
solution to System (9.7), denoted Ŵn, with respect toW ∗, the solution to System (9.5)
(see Proposition 9.19). This control next transfers into a control on the deviations of
Ω̂n with respect to Ω (Proposition 9.25). Finally, the control on Ω̂n results in a control
on P̂n, and on the deviation of L̂n(θ) with respect to L(θ) at fixed θ (Proposition 9.26).
Chaining arguments finally allow to prove Theorem 9.17.

Step 1: System (9.7) has a unique solution.

Refer to Proposition 9.13 in Section 9.3.2.

Step 2: Deviation of (the unique) solution Ŵn.

Now that existence of a (unique) solution Ŵn to System (9.7) is ensured with high
probability, the second step of the proof consists in controlling its deviation from the
solution W ∗ of the “true” system in a nonasymptotic fashion. It is the purpose of the
following result.

Proposition 9.19. Grant Assumption 9.1. Then, there exist C1, C2 > 0 such that for
any δ > 0 we have with probability at least 1 − δ: System (9.7) has a unique solution
Ŵn s.t. Ŵn,K = 1 and

∥∥∥Ŵn −W ∗
∥∥∥ ≤ √K

C1

√√√√ log
(

2K2/δ
)

n
+
C2K√
n

 .
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More notation is required to prove Proposition 9.19. For any u = (u1, . . . , uK) ∈ RK , let

D̄(u) =

∫
log

 K∑
k=1

eukωk(z)

 P̄ (dz)−
K∑
k=1

λkuk, u∗ = argmin
u

D̄(u),

D̂n(u) =

∫
log

 K∑
k=1

eukωk(z)

 P̃n(dz)−
K∑
k=1

λ̂kuk, ûn = argmin
u

D̂n(u),

D̄′ s.t. D̄′(u)l =

∫
eulωl(z)∑K
k=1 e

ukωk(z)
P̄ (dz)− λl ∀ l ≤ L,

D̂′n s.t. D̂′n(u)l =

∫
eulωl(z)∑K
k=1 e

ukωk(z)
P̃n(dz)− λ̂l ∀ l ≤ L,

D̄′′ s.t.
[
D̄′′(u)

]
l,l′

=

∫  eulωl(z)δll′∑K
k=1 e

ukωk(z)
− eulωl(z)e

ul′ωl′(z)(∑K
k=1 e

ukωk(z)
)2

 P̄ (dz) ∀ l, l′ ≤ L,

D̂′′n s.t.
[
D̂′′n(u)

]
l,l′

=

∫  eulωl(z)δll′∑K
k=1 e

ukωk(z)
− eulωl(z)e

ul′ωl′(z)(∑K
k=1 e

ukωk(z)
)2

 P̃n(dz) ∀ l, l′ ≤ L.

Observe that Systems (9.5) and (9.7) are equivalent to D̄′(u∗) = 0 and D̂′n(ûn) = 0
respectively, with the changes of variables u∗ = log(λ/W ∗) and ûn = log(λ̂/Ŵn).
As already mentioned, all these functions are homogeneous of degree 0. Therefore, in
the subsequent analysis, we consider them as functions of K − 1 variables, subject to
W ∗K = Ŵn,K = 1 (or equivalently to u∗K = log(λk) and ûn,K = log(λ̂K)), in order to
ensure uniqueness of the solutions. Lemma 9.20 shows that controlling ‖ûn − u∗‖ is
enough to control ‖Ŵn −W ∗‖.
Lemma 9.20. Suppose that Assumption 9.1 is fulfilled, and let B > 0 such that for all
k ≤ K : log(1/B) ≤ ûn,k, and log(1/B) ≤ u∗k. Then, placing ourselves in the event that
System (9.7) has a unique solution Ŵn s.t. Ŵn,K = 1, we almost-surely have:∥∥∥Ŵn −W ∗

∥∥∥ ≤ B(∥∥∥ûn − u∗∥∥∥+
C
√
K√
n

)
.

Proof. Let B > 0 such that for all k ≤ K : log(1/B) ≤ ûn,k, and log(1/B) ≤ u∗k. Then
for all k ≤ K∣∣∣Ŵn,k −W ∗k

∣∣∣ =
∣∣∣λ̂ke−ûn,k − λke−u∗k ∣∣∣ ≤ ∣∣∣e−ûn,k − e−u∗k ∣∣∣+

∣∣∣λ̂k − λk∣∣∣ e−u∗k ,∣∣∣Ŵn,k −W ∗k
∣∣∣ ≤ B(|ûn,k − u∗k|+ C√

n

)
,

∥∥∥Ŵn −W ∗
∥∥∥ ≤ B(∥∥∥ûn − u∗∥∥∥+

C
√
K√
n

)
.
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Remark 9.21. Although B is easy to derive for u∗ (indeed, it is direct to see that for
all k ≤ K : ξ ≤ Ωk ≤ M , so that W ∗k ≤ M/ξ, u∗k = log(λk/W

∗
k ) ≥ log(λminξ/M), and

finally B = M/(λminξ)), more work is needed to find an explicit lower bound for ûn.
Actually, assumptions on the ωk functions are necessary for simple derivations.

First let us assume that the ωk functions are constant on their domain. This assumption
encompasses the Stratified Sampling framework, in which the ωk functions are indicator
functions of subsets of the input space. For k, l ≤ K, let Il,k be the set {i : ωl(Zk,i) 6= 0},
and #Il,k its cardinality. System (9.7) then rewrites

#


⋃
l′ 6=l

Il′,l

 =

#


⋃
l′ 6=l

Il′,l

+
∑
k 6=l

#Il,k

 ωle
ûn,l

ω>eûn
∀l ≤ K,

eûn,l =
#
{⋃

l′ 6=l Il′,l

}
#
{⋃

l′ 6=l Il′,l

}
+
∑

k 6=l #Il,k

ω>eûn

ωl
∀l ≤ K.

With eûn,K = λ̂K , one can compute ω>eûn, and then every ûn,l for l ≤ K − 1. Finding
B is then straightforward.

Another case where B can be derived easily is when the ωk functions have all the same
domain. For instance, the may be strictly positive on all the input space (e.g. Gaussian,
Laplace, Student). System (9.7) writes

nl =
K∑
k=1

nk∑
i=1

eûn,lωl(Zk,i)∑K
l′=1 e

ûn,l′ωl′(Zk,i)
∀l ≤ K.

Let l ≤ K−1. Assume that for every pair (k, i) it holds eûn,lωl(Zk,i) < nl
nK
eûn,KωK(Zk,i).

Summing over k and i then gives nl < nl. So there exists k0 = k0(l) and i0 = i0(l) such
that eûn,lωl(Zk0,i0) ≥ λ̂lωK(Zk0,i0), or equivalently ûn,l ≥ log

(
λ̂lωK(Zk0,i0)/ωl(Zk0,i0)

)
.

Taking the minimal lower bound over l gives B.

It is now the purpose of the following lemma to show that a control on ‖ûn − u∗‖ can
be achieved by studying the deviation ‖D̂′n(u∗)− D̄′(u∗)‖.

Lemma 9.22. There exists L > 0 such that, on the event that System (9.7) has a
unique solution Ŵn such that Ŵn,K = 1, we almost-surely have:∥∥∥ûn − u∗∥∥∥ ≤ L∥∥∥D̂′n(u∗)− D̄′(u∗)

∥∥∥ .
Proof. First notice that for any compact set C ⊂ RK−1, there exists σ∗ = σ∗(C) > 0 such
that ∀u ∈ C, Sp(D̂′′n(u)) ⊂ [σ∗,+∞[. Indeed, it has been shown in Gill et al. (1988)
that the matrix D̂′′n(u) is positive definite at each point u (see proof of Proposition
1.1 therein). Since D̂′′n is continuous, so is the function associating u to the smallest
eigenvalue of D̂′′n(u). As a consequence, it attains its minimum on C. Thanks to the
previous remark, we know that this minimum, σ∗ = σ∗(C), is strictly positive, and that
for all u ∈ C: Sp(D̂′′n(u)) ⊂ [σ∗,+∞[. Now, let C be the segment [ûn,u

∗], and consider
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the function F : [0, 1]→ RK such that F (t) = D̂′n

(
ûn + t(u∗ − ûn)

)
. We have

F (1)− F (0) =

(∫ 1

0
F ′(t)dt

)
,

D̂′n(u∗)− D̂′n(ûn) =

(∫ 1

0

[
D̂′′n(ûn + t(u∗ − ûn))

]
(u∗ − ûn)dt

)
,

D̂′n(u∗)− D̄′(u∗) =

(∫ 1

0

[
D̂′′n(ûn + t(u∗ − ûn))

]
dt

)
(u∗ − ûn),

where the integral of a matrix must be understood componentwise. It is then easy to
check that the matrix (

∫ 1
0 [D̂′′n(ûn+t(u∗−ûn))]dt) is also positive definite with spectrum

in [σ∗,+∞[, from what we deduce∥∥∥u∗ − ûn∥∥∥ ≤ 1

σ∗

∥∥∥D̂′n(u∗)− D̄′(u∗)
∥∥∥ .

Lemma 9.23. Let ĥn : Z → R and h : Z → R be two real-valued functions. Assume
that there exist a, b ∈ R2 such that: a ≤ h(z) ≤ b for all z ∈ Z. If Assumption 9.1 is
fulfilled, then it holds with probability at least 1− δ∣∣∣∣∣

∫
ĥn(z)P̃n(dz)−

∫
h(z)P̄ (dz)

∣∣∣∣∣
≤ sup

z

∣∣∣ĥn(z)− h(z)
∣∣∣+

KC supz |h(z)|√
n

+ (b− a)

√
1

2λn
log

2K

δ
.

Proof. ∣∣∣∣∣
∫
ĥn(z)P̃n(dz) −

∫
h(z)P̄ (dz)

∣∣∣∣∣
≤

∣∣∣∣∣∣
∫
ĥn(z)P̃n(dz)−

∫
h(z)P̃n(dz)

∣∣∣∣∣∣+

∣∣∣∣∣
∫
h(z)P̃n(dz)−

∫
h(z)P̄ (dz)

∣∣∣∣∣ ,

≤ sup
z

∣∣∣ĥn(z)− h(z)
∣∣∣+

∣∣∣∣∣∣
K∑
k=1

λ̂k

∫
h(z)P̂k(dz)−

K∑
k=1

λk

∫
h(z)Pk(dz)

∣∣∣∣∣∣ ,

≤ sup
z

∣∣∣ĥn(z)− h(z)
∣∣∣+

∣∣∣∣∣∣
K∑
k=1

λ̂k

∫
h(z)P̂k(dz)−

K∑
k=1

λ̂k

∫
h(z)Pk(dz)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
K∑
k=1

λ̂k

∫
h(z)Pk(dz)−

K∑
k=1

λk

∫
h(z)Pk(dz)

∣∣∣∣∣∣ ,
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≤ sup
z

∣∣∣ĥn(z)− h(z)
∣∣∣+

K∑
k=1

λ̂k

∣∣∣∣∣
∫
h(z)P̂k(dz)−

∫
h(z)Pk(dz)

∣∣∣∣∣+ sup
z
|h(z)|

K∑
k=1

∣∣∣λ̂k − λk∣∣∣ ,
≤ sup

z

∣∣∣ĥn(z)− h(z)
∣∣∣+

KC supz |h(z)|√
n

+

K∑
k=1

λ̂k

∣∣∣∣∣
∫
h(z)P̂k(dz)−

∫
h(z)Pk(dz)

∣∣∣∣∣ .
Applying Hoeffding’s inequality gives that for all t > 0 and all k ≤ K it holds

P


∣∣∣∣∣
∫
h(z)P̂k(dz)−

∫
h(z)Pk(dz)

∣∣∣∣∣ ≥ t
 ≤ 2 exp

(
− 2nkt

2

(b− a)2

)
≤ 2 exp

(
− 2λnt2

(b− a)2

)
.

A direct application of the union bound finally gives that with probability at least 1− δ∣∣∣∣∣
∫
ĥn(z)P̃n(dz) −

∫
h(z)P̄ (dz)

∣∣∣∣∣
≤ sup

z

∣∣∣ĥn(z)− h(z)
∣∣∣+

KC supz |h(z)|√
n

+ (b− a)

√
1

2λn
log

2K

δ
.

Lemma 9.24. If Assumption 9.1 holds, then with probability at least 1− δ

∥∥∥D̂′n(u∗)− D̄′(u∗)
∥∥∥ ≤ √K

√ 1

2λn
log

2K2

δ
+

(K + 1)C√
n

 .

Proof. Apply Lemma 9.23 on every l component (with ĥn = eu
∗
l ωl/(

∑
k e

u∗kωk) − λ̂l,
and h = eu

∗
l ωl/(

∑
k e

u∗kωk)− λl), and conclude with the union bound.

Proposition 9.19 is then proved by combining Lemmas 9.20, 9.22 and 9.24 and setting
C1 = BL/

√
2λ, and C2 = BC(2L+ 1).

Step 3: Deviation of Ω̂n

Indeed, one must estimate Ω, and not W ∗. Hopefully, it can be recovered from W ∗.
For l ≤ K, we have

Ωl =

∫
ωl(z)P (dz) =

∫
ωl(z)P (dz)∫
P (dz)

=

∫
ωl(z)

(∑K
k=1

λkωk(z)
Ωk

)−1

P̄ (dz)

∫ (∑K
k=1

λkωk(z)
Ωk

)−1

P̄ (dz)

,

=
W ∗l∫ (∑K

k=1
λkωk(z)
W ∗k

)−1

P̄ (dz)

.

The result stated below provides a sharp control of the deviations of the natural estimate

Ω̂n,l = Ŵn,l/
∫ (

1/
∑K

k=1
λ̂kωk(z)

Ŵn,k

)
P̃n(dz).
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Proposition 9.25. Suppose that Assumptions 9.1 and 9.8 are fulfilled. Then, there
exist C ′1, C

′
2 > 0 such that for every δ > 0 we have with probability at least 1 − δ:

System (9.7) has a unique solution Ŵn s.t. Ŵn,K = 1 and

∀ l ≤ K,
∣∣∣Ω̂n,l − Ωl

∣∣∣ ≤ √K
C ′1

√
1

n
log

8K3

δ
+
C ′2K√
n

 ,

which implies
∥∥∥Ω̂n −Ω

∥∥∥ ≤ K

C ′1
√

1

n
log

8K3

δ
+
C ′2K√
n

 .

Proof. Let B,B′ > 0 such that for all k ≤ K it holds log(1/B) ≤ ûn,k ≤ log(λ/B′)

and log(1/B) ≤ u∗k ≤ log(λmin/B
′). This assumption ensures that B′ ≤ Ŵn,k ≤ B and

B′ ≤ W ∗k ≤ B for all k ≤ K. A similar assumption, has been made in Lemma 9.20.
Following the reasoning used in the proof of Lemma 9.20, constant B′ can also be made
explicit in several specific but quite general cases.

∣∣∣Ω̂n,l − Ωl

∣∣∣ =

∣∣∣∣∣∣∣∣∣∣
Ŵn,l∫ (∑K

k=1
λ̂kωk(z)

Ŵn,k

)−1

P̃n(dz)

− W ∗l∫ (∑K
k=1

λkωk(z)
W ∗k

)−1

P̄ (dz)

∣∣∣∣∣∣∣∣∣∣
,

≤ 1∫ (∑K
k=1

λ̂kωk(z)

Ŵn,k

)−1

P̃n(dz)

∣∣∣Ŵn,l −W ∗l
∣∣∣

+W ∗l

∣∣∣∣∣∣∣∣∣∣
1∫ (∑K

k=1
λ̂kωk(z)

Ŵn,k

)−1

P̃n(dz)

− 1∫ (∑K
k=1

λkωk(z)
W ∗k

)−1

P̄ (dz)

∣∣∣∣∣∣∣∣∣∣
,

≤ M

B′

∣∣∣Ŵn,l −W ∗l
∣∣∣ (9.11)

+B

(
M

B′

)2

∣∣∣∣∣∣∣∣
∫  K∑

k=1

λ̂kωk(z)

Ŵn,k

−1

P̃n(dz)−
∫  K∑

k=1

λkωk(z)

W ∗k

−1

P̄ (dz)

∣∣∣∣∣∣∣∣ .
From Proposition 9.19, we have that with probability at least 1− δ

∀l ≤ K,
∣∣∣Ŵn,l −W ∗l

∣∣∣ ≤ √K
C1

√
1

n
log

2K2

δ
+
C2K√
n

 .

As for the second term, one has

B′ ≤ Ŵn,k ≤ B and B′ ≤W ∗k ≤ B ∀ k ≤ K, (9.12)

so that

B′

M
≤

 K∑
k=1

λ̂kωk(z)

Ŵn,k

−1

≤ B

mλ
and

B′

M
≤

 K∑
k=1

λkωk(z)

W ∗k

−1

≤ B

mλmin
.
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Then ∣∣∣∣∣∣∣∣
 K∑
k=1

λ̂kωk(z)

Ŵn,k

−1

−

 K∑
k=1

λkωk(z)

W ∗k

−1
∣∣∣∣∣∣∣∣

≤
(
B

mλ

)2
∣∣∣∣∣∣
K∑
k=1

λ̂kωk(z)

Ŵn,k

−
K∑
k=1

λkωk(z)

W ∗k

∣∣∣∣∣∣ ,
≤M

(
B

mλ

)2 K∑
k=1

∣∣∣∣∣∣ λ̂kŴn,k

− λk

Ŵn,k

∣∣∣∣∣∣+

∣∣∣∣∣∣ λkŴn,k

− λk
W ∗k

∣∣∣∣∣∣ ,
≤M

(
B

mλ

)2 K∑
k=1

∣∣∣λ̂k − λk∣∣∣
Ŵn,k

+ λk

∣∣∣∣∣∣ 1

Ŵn,k

− 1

W ∗k

∣∣∣∣∣∣ ,
≤M

(
B

mλ

)2
 KC

B′
√
n

+
1

B′2

K∑
k=1

λk

∣∣∣Ŵn,k −W ∗k
∣∣∣
 ,

where λ = min{λ;λmin}. Applying again Proposition 9.19, we get that with probability
at least 1− δ∣∣∣∣∣∣∣∣

 K∑
k=1

λ̂kωk(z)

Ŵn,k

−1

−

 K∑
k=1

λkωk(z)

W ∗k

−1
∣∣∣∣∣∣∣∣ ≤
√
K

C1

√
1

n
log

2K2

δ
+
C2K√
n

 ,

with C1 = MB2C1(
mλB′

)2 , and C2 = MB2(
mλ
)2

(
C
B′ + C2

B′2

)
.

Applying Lemma 9.23 with ĥn =

(∑K
k=1

λ̂kωk
Ŵn,k

)−1

and h =

(∑K
k=1

λkωk(z)
W ∗k

)−1

, one

gets that with probability at least 1− δ∣∣∣∣∣∣∣∣
∫  K∑

k=1

λ̂kωk(z)

Ŵn,k

−1

P̃n(dz)−
∫  K∑

k=1

λkωk(z)

W ∗k

−1

P̄ (dz)

∣∣∣∣∣∣∣∣
≤
√
K

C1

√
1

n
log

4K2

δ
+
C2K√
n

 ,

with C1 = C1 + B

mλmin
√

2λ
, and C2 = C2 + CB

mλmin
. Hence, for l ≤ K, it holds with

probability 1− δ

∣∣∣Ω̂n,l − Ωl

∣∣∣ ≤ √K
C ′1

√
1

n
log

8K2

δ
+
C ′2K√
n

 ,

with C ′1 = C1M
B′ + C1BM2

B′2
and C ′2 = C2M

B′ + C2BM2

B′2
.
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Finally, the union bound gives that with probability at least 1− δ

∥∥∥Ω̂n −Ω
∥∥∥ ≤ K

C ′1
√

1

n
log

8K3

δ
+
C ′2K√
n

 .

Step 4: Deviation of L̂n(θ)

The bound for the deviation between Ω̂n and Ω next permits, at fixed θ ∈ Θ, to describe
the concentration properties of the empirical process

∣∣∣L̂n(θ)− L(θ)
∣∣∣ =

∣∣∣∣∣∣
∫

(1/

K∑
k=1

λ̂kωk(z)

Ω̂n,k

)`(z, θ)P̃n(dz)−
∫

(1/
K∑
k=1

λkωk(z)

Ωk
)`(z, θ)P̄ (dz)

∣∣∣∣∣∣ .
Proposition 9.26. Suppose that Assumptions 9.1 and 9.8 are fulfilled. Then, there
exist C ′′1 , C

′′
2 > 0 such that for all θ ∈ Θ, any δ > 0, we have with probability larger than

1− δ: System (9.7) has a unique solution Ŵn s.t. Ŵn,K = 1 and

∣∣∣L̂n(θ)− L(θ)
∣∣∣ ≤ √K

C ′′1
√

1

n
log

16K3

δ
+
C ′′2K√
n

 .

Proof. Assume that |`(z, θ)| ≤ 1 for all pair (θ, z). Fix θ ∈ Θ.∣∣∣L̂n(θ) −L(θ)
∣∣∣

=
∣∣∣EP̂n [`(Z, θ)]− EP [`(Z, θ)]

∣∣∣
=

∣∣∣∣∣∣∣∣
∫  K∑

k=1

λ̂kωk(z)

Ω̂k

−1

`(z, θ)P̃n(dz)−
∫  K∑

k=1

λkωk(z)

Ωk

−1

`(z, θ)P̄ (dz)

∣∣∣∣∣∣∣∣ .

We recover the second term in Equation (9.11), but with Ω̂k and Ωk instead of Ŵn,k and
W ∗k respectively. The same technique can be used with small changes. Equation (9.12)
becomes

mB′λ

B
≤ Ω̂n,l ≤

MB

B′
and

mB′λmin

B
≤ Ωk ≤M ∀ k ≤ K,

so that

mB′λ

MB
≤

 K∑
k=1

λ̂kωk(z)

Ω̂n,k

−1

`(z, θ) ≤ MB

mB′λ
,

and

mB′λmin

MB
≤

 K∑
k=1

λkωk(z)

Ωk

−1

`(z, θ) ≤ M

mλmin
.
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Then∣∣∣∣∣∣∣∣
 K∑
k=1

λ̂kωk(z)

Ω̂n,k

−1

`(z, θ) −

 K∑
k=1

λkωk(z)

Ωk

−1

`(z, θ)

∣∣∣∣∣∣∣∣
≤
(
MB

mB′λ

)3
KC√
n

+
1

M

(
MB

mB′λ

)4 K∑
k=1

λk

∣∣∣Ω̂n,k − Ωk

∣∣∣ .
Applying Proposition 9.25, we get that with probability at least 1− δ∣∣∣∣∣∣∣∣

 K∑
k=1

λ̂kωk(z)

Ω̂n,k

−1

`(z, θ)−

 K∑
k=1

λkωk(z)

Ωk

−1

`(z, θ)

∣∣∣∣∣∣∣∣
≤
√
K

C̃1

√
1

n
log

8K3

δ
+
C̃2K√
n

 ,

with C̃1 =
C′1
M

(
MB
mB′λ

)4

, and C̃2 =
C′2
M

(
MB
mB′λ

)4

+

(
MB
mB′λ

)3

.

Applying Lemma 9.23 with ĥn =

(∑K
k=1

λ̂kωk
Ω̂n,k

)−1

and h =

(∑K
k=1

λkωk(z)
Ωk

)−1

, one

gets that with probability at least 1− δ∣∣∣∣∣∣∣∣
∫  K∑

k=1

λ̂kωk(z)

Ω̂n,k

−1

`(z, θ)P̃n(dz)−
∫  K∑

k=1

λkωk(z)

Ωk

−1

`(z, θ)P̄ (dz)

∣∣∣∣∣∣∣∣
≤
√
K

C ′′1
√

1

n
log

16K3

δ
+
C ′′2K√
n

 ,

with C ′′1 = C̃1 + M

mλmin
√

2λ
, and C ′′2 = C̃2 + CM

mλmin
.

Step 5: Proof of Theorem 9.17 by Chaining Arguments

Finally, the maximal deviation bound stated in Theorem 9.17 is obtained from the
pointwise bound of Proposition 9.26 combined with a classic chaining argument (see
e.g. Dudley (1999)), involving the complexity of class F , cf Assumption 9.16. Observe
first that: ∀(θ, θ′) ∈ Θ2,

∣∣∣L̂n(θ)− L(θ)
∣∣∣ ≤ ∣∣∣L̂n(θ)− L̂n(θ′)

∣∣∣+
∣∣∣L̂n(θ′)− L(θi)

∣∣∣+
∣∣∣L(θ′)− L(θ)

∣∣∣
≤ 2MB

mB′λ

∥∥∥`(·, θ)− `(·, θ′)∥∥∥
L1(Q)

+
∣∣∣L̂n(θ′)− L(θi)

∣∣∣ ,



CHAPTER 9. LEARNING FROM BIASED TRAINING SAMPLES 186

where Q = (P̃n + P̄ )/2, by using the definitions of L̂n and L, and the upper bounds
derived in the previous subsection.

Let ζ > 0, and θ1, . . . , θN (ζ,F ,L1(Q)) a ζ-coverage of F with respect to L1(Q). Set
N = N (ζ,F , L1(Q)) for simplicity. Let θ be an arbitrary element of Θ. By definition,
there exists i ≤ N such that supQ ‖`(·, θ) − `(·, θi)‖L1(Q) ≤ ζ. Applying the bound
above, we get: ∣∣∣L̂n(θ)− L(θ)

∣∣∣ ≤ 2MB

mB′λ
ζ +

∣∣∣L̂n(θi)− L(θi)
∣∣∣ .

Proposition 9.26 combined with the union bound also gives that with probability at
least 1− δ

sup
i≤N

∣∣∣L̂n(θi)− L(θi)
∣∣∣ ≤ √K

C ′′1
√

1

n
log

16NK3

δ
+
C ′′2K√
n

 ,

≤
√
K

C ′′1
√

1

n
log

16C0K3

δζr
+
C ′′2K√
n

 ,

so that it also holds with probability at least 1− δ

sup
θ∈Θ

∣∣∣L̂n(θ)− L(θ)
∣∣∣ ≤ C ′′3 ζ +

√
K

C ′′1
√

1

n
log

16C0K3

δζr
+
C ′′2K√
n

 ,

with C ′′3 = 2MB
mB′λ . This bound remaining valid for any ζ > 0, one can now optimize on

the value of ζ. Choosing ζ ∼ 1/
√
n finally gives that it holds with probability at least

1− δ:

sup
θ∈Θ

∣∣∣L̂n(θ)− L(θ)
∣∣∣ ≤ √K

C ′′1
√

1

n
log

16C0K3nr/2

δ
+
C ′′2K√
n

+
C ′′3√
n
.

9.5 Numerical Experiments

In this section, we display some numerical experiments that confirm the benefits of the
debiasing approach detailed in Section 9.3. While Section 9.5.1 focuses on synthetic
estimation experiments, Section 9.5.2 is devoted to learning experiments on real-world
datasets. Experiments have been run in Python, and the code used to perform debiased
ERM is publicly available at: https://github.com/plaforgue/db_learn.

9.5.1 Estimation Experiments

The synthetic data here consists of 1000 train and 300 test realizations of a 3-dimensional
Gaussian random vector. The goal pursued is to predict the norm of the realizations
via four learning algorithms: Linear Regression (LR), Kernel Ridge Regression (KRR),
Support Vector Regression (SVR) and Random Forest (RF). They are implemented
with default hyperparameters, as focus is not on performances per se, but rather on the
impact of the debiasing procedure for a given model.

https://github.com/plaforgue/db_learn
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The simplest biasing functions ωk’s one can imagine, and that are used here, are the
indicator functions of subspaces of R3. These functions (or equivalently the subsets)
are chosen according to twelve different scenarios, in order to contrast the debiasing
effects. When one biasing function is the identity (or one subspace is the whole R3),
the algorithm is also trained on the sole unbiased sample. However, this approach does
not benefit from the whole dataset, and performances reported compare unfavorably
to debiased ERM. Numerical results are gathered in Tables 9.1 and 9.2. For scenarios
in which no subspace is R3, two lines are displayed: the upper one corresponds to the
standard ERM (std), while the second one is achieved through the debiased approach
(dbs). When one subspace is R3, a third line is added, which corresponds to the result
obtained with training on the sole unbiased sample (ubs).

Let us now thoroughly describe the first six scenarios, that depict situations where
selection bias applies directly to the norm of the realizations, and whose visualizations
are available in Figure 9.2.

a) To understand scenario a), one must have in mind that 1.5 is approximately the
median value of ‖x‖ when x ∼ N (03, I3) (see χ2(3) law). Hence, partitioning
the whole space using 1{‖x‖ ≤ 1.6} and 1{‖x‖ ≥ 1.4} (the two subspaces must
intersect) divides R3 into parts of roughly equal importance. Considering two
samples of equal size, each associated to one of these biasing functions, should
therefore be almost equivalent to considering blindly the concatenated sample.
Consequently, debiasing ERM in this scenario should not lead to any particular
improvement. This is exactly what is verified empirically. As no subset is the
full space, no third line is provided. On the contrary, if the samples were of
different sizes, one should expect an improvement when using debiasing ERM.

b) In order to emphasize this effect, scenario b) considers strongly concentrated
points around 0, with 1{‖x‖ ≤ 0.8}. A sample of size 900 is drawn from this
part of the space, which usually represents 10% of the distribution, while a 100
long unbiased sample completes the scenario. As expected, the debiasing ERM
appears to be less fooled by the outnumbered examples with small norm, and
induces a significant improvement compared to the naive ERM. ERM based the
sole unbiased sample is also globally outperformed.

c) Scenario c) is similar to scenario b), with less imbalanced samples. Debiasing
ERM remains the most successful approach, but by expected lower margins.

d) What happens if one attempts to fight the selection bias towards 03 and consider
a second sample biased towards great norms, rather than an unbiased one ? It is
the purpose of scenarios d) and e) to investigate this option, using 1{‖x‖ ≥ 0.5}
as a second biasing function. Almost no change can be acknowledged when the
sample sizes are the same as in scenario c) (see scenario d)).

e) However, the advantage of debiasing ERM decreases with the proportion of
small norm points, as illustrated by scenario e).

f) Finally, scenario f) illustrates that the number of samples is of low importance.
If the sample biased towards small norms is large enough, debiasing ERM out-
performs all other methods, even if two additional samples are considered, one
biased towards large norms, and one unbiased.
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(c) Scenario c)
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(f) Scenario f)

Figure 9.2 – Different scenarios when selection bias occur on norm
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LR KRR SVR RF

Sc. a) std 4.58e-1 ± 4.01e-2 6.77e-2 ± 2.91e-2 6.62e-3 ± 2.72e-3 3.36e-2 ± 6.66e-3
dbs 4.59e-1 ± 3.97e-2 6.33e-2 ± 2.81e-2 6.54e-3 ± 2.64e-3 3.39e-2 ± 6.60e-3

std 1.30e+0 ± 9.81e-2 3.18e-1 ± 7.46e-2 3.77e-2 ± 1.18e-2 1.45e-1 ± 3.20e-2
Sc. b) dbs 4.83e-1 ± 4.81e-2 1.81e-1 ± 5.64e-2 4.42e-2 ± 1.33e-2 1.18e-1 ± 2.78e-2

ubs 4.84e-1 ± 4.88e-2 3.40e-1 ± 7.75e-2 3.04e-2 ± 9.71e-3 1.31e-1 ± 2.77e-2

std 7.21e-1 ± 6.63e-2 1.05e-1 ± 3.68e-2 1.01e-2 ± 4.03e-3 5.22e-2 ± 1.08e-2
Sc. c) dbs 4.61e-1 ± 3.80e-2 7.66e-2 ± 3.13e-2 1.03e-2 ± 3.73e-3 4.53e-2 ± 9.03e-3

ubs 4.61e-1 ± 3.80e-2 1.03e-1 ± 3.66e-2 1.06e-2 ± 4.06e-3 4.63e-2 ± 8.93e-3

Sc. d) std 6.98e-1 ± 6.55e-2 1.01e-1 ± 3.60e-2 9.82e-3 ± 3.83e-3 5.09e-2 ± 1.02e-2
dbs 4.58e-1 ± 3.84e-2 7.51e-2 ± 3.07e-2 9.92e-3 ± 3.56e-3 4.43e-2 ± 8.53e-3

Sc. e) std 4.60e-1 ± 4.03e-2 6.23e-2 ± 2.74e-2 6.19e-3 ± 2.46e-3 3.35e-2 ± 6.70e-3
dbs 4.56e-1 ± 3.82e-2 6.01e-2 ± 2.68e-2 6.16e-3 ± 2.41e-3 3.29e-2 ± 6.32e-3

std 7.08e-1 ± 6.80e-2 1.01e-1 ± 3.55e-2 9.72e-3 ± 3.61e-3 5.11e-2 ± 1.08e-2
Sc. f) dbs 4.59e-1 ± 3.91e-2 7.40e-2 ± 2.99e-2 9.85e-3 ± 3.36e-3 4.44e-2 ± 8.82e-3

ubs 4.65e-1 ± 4.10e-2 1.69e-1 ± 5.10e-2 1.67e-2 ± 5.77e-3 6.86e-2 ± 1.46e-2

Table 9.1 – Mean Squared Errors by 4 Algorithms on the Norm Biased Scenarios

All numerical results can be found in Table 9.1 and attest that: 1) ignoring selection
bias may have dramatic consequences 2) discarding some data and learning only on the
unbiased sample – when it exists – is not a viable solution either, thus endorsing the
debiased approach we promote.

One may however argue that results presented in Table 9.1 overestimate the debiasing
effect, as bias occurs precisely on the problem’s target. In the following, we present
similar results obtained when selection bias applies on one component of the Gaussian
only, and not on the norm itself. Again, six different scenarios have been investigated,
and depicted in Figure 9.3, while complete numerical results are gathered in Table 9.2.

g) , h) Scenarios g) and h) are analogous to scenarios b) and c) respectively, except
that only one component is biased towards small values with 1{|x0| < 0.1}. The
improvements induced by debiasing ERM remains substantial, and decrease
expectedly as the unbiased sample becomes larger (scenario h)).

i) Scenario i) illustrates that debiasing ERM may improve the results even if a
bias applies on large values, using 1{x0 > 1.5} for instance. However, this bias
does not distort the predictions towards small norm values, inducing smaller
squared norm errors, hence the smaller benefit of debiased ERM.

j) Scenario j) is analogous to scenario a), but with 3 samples. It leads to similar
conclusions: when the blind concatenated sample is similar to an unbiased
sample (the interval |x0| < 0.1 indeed represents 10% of the distribution),
debiased ERM is of lower interest.

k) But when the proportions are not respected anymore, as in scenario k), it
significantly increases the performances.

l) Finally, scenario l) involves 4 samples, with similar conclusions as above.
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(b) Scenario h)
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(d) Scenario j)
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(e) Scenario k)

axis 0

−3
−2

−1
0

1
2

3 −3
−2

−1
0

1
2

3
−3

−2

−1

0

1

2

3

|x0| < 0.1,  n= 500
x0 < 0.0,    n= 150
x0 > 0.0,    n= 150
Unbiased,  n= 200

(f) Scenario l)

Figure 9.3 – Different scenarios when selection bias occur on first dimension
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LR KRR SVR RF

std 5.61e-1 ± 5.66e-2 2.04e-1 ± 5.77e-2 1.54e-2 ± 5.38e-3 1.40e-1 ± 3.19e-2
Sc. g) dbs 4.80e-1 ± 4.48e-2 1.61e-1 ± 5.33e-2 3.78e-2 ± 1.26e-2 8.55e-2 ± 2.10e-2

ubs 4.82e-1 ± 4.56e-2 3.37e-1 ± 8.14e-2 3.00e-2 ± 1.03e-2 1.29e-1 ± 2.98e-2

std 4.88e-1 ± 4.66e-2 8.68e-2 ± 3.37e-2 8.27e-3 ± 3.24e-3 4.39e-2 ± 9.08e-3
Sc. h) dbs 4.59e-1 ± 3.96e-2 7.55e-2 ± 3.12e-2 9.99e-3 ± 3.51e-3 4.06e-2 ± 8.05e-3

ubs 4.59e-1 ± 3.97e-2 1.03e-1 ± 3.73e-2 1.07e-2 ± 3.89e-3 4.64e-2 ± 9.30e-3

std 5.53e-1 ± 4.84e-2 6.71e-2 ± 2.93e-2 6.66e-3 ± 2.33e-3 3.92e-2 ± 7.92e-3
Sc. i) dbs 4.58e-1 ± 3.83e-2 6.71e-2 ± 2.88e-2 8.72e-3 ± 3.02e-3 3.84e-2 ± 7.83e-3

ubs 4.58e-1 ± 3.87e-2 1.02e-1 ± 3.74e-2 1.06e-2 ± 3.92e-3 4.60e-2 ± 8.95e-3

Sc. j) std 4.57e-1 ± 4.01e-2 6.44e-2 ± 2.89e-2 6.36e-3 ± 2.60e-3 3.33e-2 ± 6.92e-3
dbs 4.58e-1 ± 3.99e-2 6.32e-2 ± 2.88e-2 6.53e-3 ± 2.64e-3 3.32e-2 ± 6.83e-3

Sc. k) std 4.86e-1 ± 4.55e-2 8.72e-2 ± 3.49e-2 8.34e-3 ± 3.35e-3 4.40e-2 ± 9.24e-3
dbs 4.60e-1 ± 3.98e-2 7.64e-2 ± 3.27e-2 1.00e-2 ± 3.70e-3 4.09e-2 ± 8.58e-3

std 4.88e-1 ± 4.71e-2 8.64e-2 ± 3.32e-2 8.21e-3 ± 3.18e-3 4.40e-2 ± 8.82e-3
Sc. l) dbs 4.60e-1 ± 3.99e-2 7.50e-2 ± 3.10e-2 9.91e-3 ± 3.46e-3 4.08e-2 ± 8.29e-3

ubs 4.69e-1 ± 4.18e-2 2.04e-1 ± 5.81e-2 1.98e-2 ± 7.00e-3 8.13e-2 ± 1.74e-2

Table 9.2 – Mean Squared Errors by 4 Algorithms on the 1 Component Biased Scenarios

Again, and although bias does not apply on the target itself, but instead on one simple
covariate, the debiasing approach naturally yields improvements, both upon standard
and unbiased (on fewer observations) methods.

9.5.2 Learning Experiments

In many practical applications, the data acquisition process cannot be fully mastered,
information being collected in several goes over specific strata of the population of
interest, and statistical learning then relies on a collection of biased data samples. It
is precisely the purpose of the procedure investigated in this chapter to address this
crucial issue.

Boston dataset

As an illustration, we consider here the Boston housing dataset problem, where the price
of a house is to be predicted based on 14 attributes, such as the number of rooms or
neighborhood statistics. One may easily conceive that the dataset at disposal is actually
composed of two samples: one large open dataset, in which the most expensive houses
do not appear for privacy purposes, and a second one, unbiased but smaller, taken e.g.
from a local estate agency. This setting can be simulated the following way: from the
500 observations available, 400 are kept as a first training sample. Two samples are then
derived from it: a biased one with the cheapest houses of size 250, and an unbiased one
of size 50. Models are trained on the 300 selected observations, and tested on the other
100 ones first set aside. Numerical results are displayed in Table 9.3 in terms of Mean
Squared Errors (MSEs), validating the soundness of the debiasing approach.

Adult dataset

The machine-learning problem associated to the Adult dataset, also known as the Census
Income dataset (freely available at https://archive.ics.uci.edu/ml/datasets/adult), is a
binary classification task, where the goal is to predict whether a person’s income exceeds
50,000$ a year, based on census data.

https://archive.ics.uci.edu/ml/datasets/adult
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LR SVR RF

Standard ERM 26.83 ± 8.13 98.63 ± 17.69 18.26 ± 7.00
Debiased ERM 25.71 ± 6.59 84.73 ± 15.27 17.94 ± 7.25
Unbiased Sample 28.02 ± 7.57 85.05 ± 15.13 19.27 ± 7.30

Table 9.3 – MSEs on Boston dataset (100 runs average)

By nature, such data combine population strata, making it the perfect playground for
the approach we promote. For instance, and as revealed by Figure 9.4a, the proportion
of persons having an income exceeding 50k$ a year substantially depends on the number
of years of education. If highly educated people happen to be over-represented in the
dataset (which is totally plausible as it is more convenient to poll people concentrated
in big cities, usually more educated, than people living in the countryside), it should
deteriorate the predictions in absence of a debiasing procedure.

Furthermore, notice that this setting cannot be casted as simple covariate shift, since
conditional laws can by no means be considered as identical from one group to another.
Figure 9.4b highlights these differences by showing the income’s dependence with respect
to the age for three different levels of education. The striking difference between the
curves makes it impossible to consider the covariate shift as a reasonable assumption.
In contrast, the general debiasing framework developed in this article perfectly suits the
following situation.

The first experimental protocol is as follows. From the whole set of observations, 1500
are kept for the testing phase. From the rest are sampled two subgroups: one of 12+
years of education people of size 5 900, and one unbiased (i.e. sampled from the entire
population) of size 100. A Logistic Regression (LogReg) and a Random Forest (RF) are
then trained on the concatenation of the 6 000 observations, with and without debiasing
procedure, as well as on the small second sample of size 100 only. Numerical results
are summarized in Table 9.4 in terms of prediction scores. As expected, the standard
LogReg totally collapses, with a deficit of 16% compared to its debiased version. As
for the RF, a partition method, it severely suffers from the lack of data when only the
small unbiased sample is used. The debiased ERM procedures, however, behaves nicely
in all circumstances.

The second protocol is relatively similar. First notice that the age of the subject has a
strong impact on his/her probability to earn more than 50k$ a year (see Figure 9.5a).
Moreover, and as for the example based on years of education, this scenario cannot be
casted as a covariate shift problem. Indeed, the conditional laws cannot be assumed to
remain identical. Figure 9.5b illustrates this phenomenon by showing the dependence
of the income with respect to the years of education by age group. Clearly, middle age
people take more advantage of their education than younger people, which is totally
normal as they are working for a longer period. This observation makes simple covariate
shift impossible to consider here.

If middle age people happen to be over-represented in the training dataset, it should
induce a general over-estimation of the probability, unless the debiasing procedure is
used. This setting has been simulated as follows. From the initial observations, 5 000
are kept for the testing phase. From the rest are sampled two subgroups: one of middle
age people of size 9 900, and one unbiased (i.e. sampled from the entire population) of
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size 100. A Logistic Regression (LogReg) and a Random Forest (RF) are then trained
on the concatenation of the 10 000 observations, with and without debiasing procedure,
as well as on the small second sample of size 100 only. Numerical results are summarized
in Table 9.5 in terms of prediction scores. Again, the debiased version of the ERM yields
the best performances, and for both algorithms. The gaps are however less spectacular
than that presented for the first protocol. It is probably due to a softer biasing effect
than the one achieved when it applies to the years of education. The less striking
difference between conditional laws (Figure 9.4b and Figure 9.5b) is another marker
that the debiasing effect expected in this latter example is less important.

Hence, these three learning examples, either on regression or classification tasks, that
cannot be tackled through ordinary covariate shift (whether the bias applies to the
target, or the conditional laws obviously change), empirically confirm that ignoring
selection bias in the learning procedure – or discarding data to keep only unbiased
observations – jeopardizes most algorithms. It thus strongly supports the relevance of
the debiasing approach detailed in this chapter.

Figure 9.4 – Impact of Education on salary
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(b) Salary ≥ 50k$ w.r.t. age by education level

LogReg RF

Standard ERM 63.95 ± 1.37 42.73 ± 3.36
Debiased ERM 79.77 ± 1.72 43.58 ± 4.77
Unbiased Sample 77.75 ± 2.27 22.16 ± 6.18

Table 9.4 – Prediction scores on Adult dataset, bias on Education (100 runs average)
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Figure 9.5 – Impact of Age on salary
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(b) Salary ≥ 50k$ w.r.t. education by age
group

LogReg RF

Standard ERM 78.74 ± 1.24 83.52 ± 0.52
Debiased ERM 80.90 ± 1.09 84.09 ± 0.62
Unbiased Sample 77.96 ± 1.96 80.46 ± 1.17

Table 9.5 – Prediction scores on the Adult dataset, bias on Age (100 runs average)

9.6 Conclusion

In this chapter, we have provided a sound methodology to address bias selection issues in
statistical learning. We have extended the paradigmatic ERM approach to the situation
where learning is based on biased training samples. In contrast to alternative techniques
documented in the literature, the method proposed is very general and can be possibly
applied to any ERM-like learning algorithm straightforwardly. It relies on a preliminary
debiasing of the raw empirical risk functional in the spirit of the procedure introduced in
Vardi (1985) for cumulative density function estimation in biased sampling models. The
theoretical analysis carried out under mild assumptions reveals that the learning rate
thus achieved is the same as that attained in absence of any selection bias phenomenon.
This is also empirically confirmed by the illustrative examples displayed in Section 9.5.



Conclusion and Perspectives

The contribution presented in this manuscript is twofold.

First, in Part I, we have introduced and studied a new hypothesis set: the composition
of functions from vector-valued Reproducing Kernel Hilbert Spaces. Inspired from Deep
Learning architectures, it also benefits from the thorough theoretical understanding and
the rigorous complexity control we have on kernel functions. But the main advantage
of this architecture surely lies in its ability to deal with infinite dimensional inputs
and outputs. A kernelization step then allows to cope with any complex structured
data, as soon as a kernel can be defined on them. The theoretical guarantees, stated in
terms of excess risk, however require a trace class assumption, which is not granted for
the useful identity decomposable kernel for instance. A possible alternative could be
found in stability approaches, long neglected because of the alternate descent scheme
promoted to optimize our model.

Indeed, Chapter 5’s duality approach shows that the last layer of the architecture can be
finitely parametrized, even when outputs are infinite dimensional. This notably opens
the door to a full Gradient Descent approach, made possible by a Representer Theorem
dedicated to compositional kernel architectures. This technique should improve the
convergence process, so far made difficult by the non-convexity of the objective and the
tendency of alternate approaches to find local minima. Another optimization related
research direction is the introduction of kernel approximations. They can be used both
for the inputs and the outputs, and should drastically reduce the computation time,
especially if they are combined with a doubly stochastic scheme.

These speed-ups would result in making the approach more practical on large unlabeled
structured datasets, for which Kernel Autoencoders are of particular interest. Indeed,
beyond providing a deep extension of Kernel Principal Component Analysis, Kernel
Autoencoders can be used in semi-supervised settings, where they can help learning
a relevant output embedding for instance. Finally, and as an answer to the initial
objective which consisted in taking advantage from both deep and kernel methods, one
of the most promising model seems to me the hybrid architecture. With first and last
layers only as operator-valued kernel mappings, it would be able to handle complex
data, while benefiting from the deep machinery at its core. This could definitely be
considered as taking the best of the two worlds.

Second, in Part II, we have studied some alternatives to the standard Empirical Risk
Minimization framework. Indeed, when training data are biased, contain outliers, or
come from heavy-tailed distributions, the empirical mean may not be the best substitute
to the expectation. An estimator of particular interest is the Median-of-Means. It can
be shown to be sub-Gaussian, on the sole requirement that the targeted distribution has
a finite second order moment. Interestingly, these strong concentration properties have
been extended to randomization and to the case of U -statistics. Nevertheless, the choice
of randomization is limited to the sampling without replacement for technical reasons,
and the particular case of Median-of-Incomplete-U -Statistics is still unsolved. A tighter
analysis of V -statistics concentration might be the key to remedy these situations.
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Median-of-Means-like estimators can be used to perform learning in two ways. The
first one is the closest to Empirical Risk Minimization, and advocates minimizing a
Median-of-Means estimator of the risk. This paradigm has been shown to nicely extend
to randomized and U -statistics settings, although it suffers from slower rates, compared
to the second learning approach. Solutions are approximately computed through an
adaptation of Gradient Descent, that often converges toward local solutions. In order
to avoid this problem, one usually adds an artificial randomization at each step. This,
however, is naturally incorporated in the randomized version of Median-of-Means we
have introduced, making the analysis easier. The second way to use Median-of-Means
estimators is to perform tournament procedures. This approach has been adapted to
the pairwise setting, and benefits from strong guarantees, even for heavy-tailed data.
Its computation for infinite hypothesis sets remains nonetheless a challenge. Addressing
this issue, by leveraging ε-coverages for instance, would make it a credible and serious
contender to Empirical Risk Minimization in many unfriendly situations.

Finally, the sample bias issue was tackled by proposing a general reweighting adaptation
of Empirical Risk Minimization. The minimizer of the debiased risk estimate has been
proven to satisfy guarantees of the same order as that of an unbiased risk minimizer.
If requiring some knowledge about the biasing mechanism at work seems reasonable,
assuming the biasing functions to be known might be unrealistic in practice. A key
research direction would then consist in studying how an approximation of the biasing
functions affects the guarantees. If the latter are preserved, the debiased Empirical Risk
Minimization framework we have proposed would constitute a valuable asset to address
all types of dataset shift scenarios, a crucial concern in modern Machine Learning.
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A The Bounded Differences Inequality

Proposition. (The Bounded Differences Inequality, McDiarmid (1989)) Let Sn =
{Zi}i≤n be n i.i.d. realizations of a Z-valued random variable Z, and f : Zn → R
such that there exists (ci)i≤n such that: ∀i ≤ n, ∀(z1, . . . , zn, zi′) ∈ Zn+1∣∣∣f(z1, . . . , zi, . . . , zn)− f(z1, . . . , zi′ , . . . , zn)

∣∣∣ ≤ ci.
Then, with the notation f(Sn) = f(Z1, . . . , Zn), it holds for every t > 0

P
{
f(Sn)− E

[
f(Sn)

]
> t

}
≤ exp

(
− 2t2∑n

i=1 c
2
i

)
,

P
{
f(Sn)− E

[
f(Sn)

]
< −t

}
≤ exp

(
− 2t2∑n

i=1 c
2
i

)
.

Notice that Hoeffding’s Inequality is a particular case of this proposition, with f(Sn) =
1
n

∑n
i=1 Zi, and ci = (bi − ai)/n.

B Probabilities Upper-Bounding

B.1 MoRM

By virtue of Chebyshev’s inequality, one gets:

p̄t ≤
E
[
(θ̄1 − θ)2

]
t2

=

ESn
[
E
[
(θ̄1 − θ)2 | Sn

]]
t2

.

Observing that E[θ̄1|Sn] = θ̂n and that

E
[
(θ̄1 − θ)2|Sn

]
= Var

(
θ̄1 | Sn

)
+ (θ̂n − θ)2 = (θ̂n − θ)2 +

1

B

n−B
n

σ̂2
n,

where σ̂2
n = 1

n−1

∑n
i=1(Zi − θ̂n)2, we deduce that

p̄t ≤
(

1

n
+
n−B
nB

)
σ2

t2
=

σ2

Bt2
.

MoRU

Observe first that

Var
(
Ū1(h)

)
= E

[
Var(Ū1(h) | Sn)

]
+ Var

(
E
[
Ū1(h) | Sn

])
. (13)

Recall that E[Ū1(h) | Sn] = Un(h), so that

Var
(
E
[
Ū1(h) | Sn

])
=

4σ2
1(h)

n
+

2σ2
2(h)

n(n− 1)
. (14)
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In addition, we have, for B ≥ 4,

Var
(
Ū1(h) | Sn

)
=

4

B2(B − 1)2

∑
i<j

h2(Xi, Xj)Var(ε1,iε1,j)

+
∑

i<j, k<l
(i,j)6=(k,l)

Cov(ε1,iε1,j , ε1,lε1,k)h(Xi, Xj)h(Xk, Xl).

Let i 6= j, one may check that

Var(ε1,iε1,j) =
B(B − 1)(n−B)(n+B − 1)

n2(n− 1)2
.

And, for any k 6= l, we have

Cov(ε1,iε1,j , ε1,lε1,k) = −B(B − 1)

n(n− 1)

(n−B)(4nB − 6n− 6B + 6)

n(n− 1)(n− 2)(n− 3)

when {i, j} ∩ {k, l} = ∅, as well as

Cov(ε1,iε1,j , ε1,iε1,k) =
B(B − 1)

n(n− 1)

(n−B)(nB − 2n− 2B + 2)

n(n− 1)(n− 2)

when k 6= j and k 6= i. Hence, observing that E[h(X1, X2)h(X1, X3)] = σ2
1(h) + θ2(h),

we obtain:

E
[
Var(Ū1(h) | Sn)

]
=

2(n−B)(n+B − 1)

n(n− 1)B(B − 1)

(
σ2(h) + θ2(h)

)
− (n−B)(4nB − 6n− 6B + 6)

n(n− 1)B(B − 1)
θ2(h)

+
4(n−B)(nB − 2n− 2B + 2)

n(n− 1)B(B − 1)
(σ2

1(h) + θ2(h)). (15)

Combining (13), (14) and (15), we get:
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B(B − 1)
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Chebyshev’s inequality permits to conclude.

C Useful Lemma

Lemma. Let d ∈ N∗. Then, for any n,K ∈ N2 it holds

K ≤ n

2d− 1
⇒

⌊
n

K

⌋
− d+ 1 ≥ n

2K
.
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Proof. First case: K ≤ n
2d .

K ≤ n

2d
,

d ≤ n

2K
,

n

2K
≤ n

K
− d,

n

2K
≤
⌊
n

K

⌋
− d+ 1.

Second case: n
2d ≤ K ≤ n

2d−1 .

n

2d
≤ K ≤ n

2d− 1
,
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n

K
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n
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n

K
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− d+ 1.

D Details on Incomplete U-Statistic Bounded Difference
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Titre : Apprentissage de Représentations par Méthodes à Noyaux Profondes pour les Données Complexes
et Problèmes de Fiabilité

Mots clés : Noyaux à Valeurs Opérateurs, Autoencodeurs, Fonctions de perte Robustes, Médiane-des-
Moyennes, Bias de Sélection

Résumé : Cette thèse débute par l’étude d’architectures
profondes à noyaux pour les données complexes. L’une
des clefs du succès des algorithmes d’apprentissage pro-
fond est la capacité des réseaux de neurones à ex-
traire des représentations pertinentes. Cependant, les rai-
sons théoriques de ce succès nous sont encore large-
ment inconnues, et ces approches sont presque exclusive-
ment réservées aux données vectorielles. D’autre part, les
méthodes à noyaux engendrent des espaces fonctionnels
étudiés de longue date, les Espaces de Hilbert à Noyau Re-
produisant (Reproducing Kernel Hilbert Spaces, RKHSs),
dont la complexité est facilement contrôlée par le noyau ou
la pénalisation, tout en autorisant les prédictions dans les
espaces structurés complexes via les RKHSs à valeurs vec-
torielles (vv-RKHSs).

L’architecture proposée consiste à remplacer les blocs
élémentaires des réseaux usuels par des fonctions appar-
tenant à des vv-RKHSs. Bien que très différents à première
vue, les espaces fonctionnels ainsi définis sont en réalité
très similaires, ne différant que par l’ordre dans lequel les
fonctions linéaires/non-linéaires sont appliquées. En plus
du contrôle théorique sur les couches, considérer des fonc-
tions à noyau permet de traiter des données structurées,
en entrée comme en sortie, étendant le champ d’applica-
tion des réseaux aux données complexes. Nous conclurons
cette partie en montrant que ces architectures admettent la
plupart du temps une paramétrisation finie-dimensionnelle,
ouvrant la voie à des méthodes d’optimisation efficaces
pour une large gamme de fonctions de perte.

La seconde partie de cette thèse étudie des alternatives à la
moyenne empirique comme substitut de l’espérance dans
le cadre de la Minimisation du Risque Empirique (Empiri-
cal Risk Minimization, ERM). En effet, l’ERM suppose de
manière implicite que la moyenne empirique est un bon es-
timateur. Cependant, dans de nombreux cas pratiques (e.g.
données à queue lourde, présence d’anomalies, biais de
sélection), ce n’est pas le cas.

La Médiane-des-Moyennes (Median-of-Means, MoM) est
un estimateur robuste de l’espérance construit comme suit :
des moyennes empiriques sont calculées sur des sous-
échantillons disjoints de l’échantillon initial, puis est choisie
la médiane de ces moyennes. Nous proposons et analy-
sons deux extensions de MoM, via des sous-échantillons
aléatoires et/ou pour les U-statistiques. Par construction,
les estimateurs MoM présentent des propriétés de robus-
tesse, qui sont exploitées plus avant pour la construction de
méthodes d’apprentissage robustes. Il est ainsi prouvé que
la minimisation d’un estimateur MoM (aléatoire) est robuste
aux anomalies, tandis que les méthodes de tournoi MoM
sont étendues au cas de l’apprentissage sur les paires.

Enfin, nous proposons une méthode d’apprentissage
permettant de résister au biais de sélection. Si les
données d’entraı̂nement proviennent d’échantillons biaisés,
la connaissance des fonctions de biais permet une re-
pondération non-triviale des observations, afin de construire
un estimateur non biaisé du risque. Nous avons alors
démontré des garanties non-asymptotiques vérifiées par
les minimiseurs de ce dernier, tout en supportant empirique-
ment l’analyse.
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Abstract : The first part of this thesis aims at exploring deep
kernel architectures for complex data. One of the known
keys to the success of deep learning algorithms is the ability
of neural networks to extract meaningful internal represen-
tations. However, the theoretical understanding of why these
compositional architectures are so successful remains limi-
ted, and deep approaches are almost restricted to vecto-
rial data. On the other hand, kernel methods provide with
functional spaces whose geometry are well studied and un-
derstood. Their complexity can be easily controlled, by the
choice of kernel or penalization. In addition, vector-valued
kernel methods can be used to predict kernelized data.
It then allows to make predictions in complex structured
spaces, as soon as a kernel can be defined on it.

The deep kernel architecture we propose consists in repla-
cing the basic neural mappings by functions from vector-
valued Reproducing Kernel Hilbert Spaces (vv-RKHSs).
Although very different at first glance, the two functional
spaces are actually very similar, and differ only by the order
in which linear/nonlinear functions are applied. Apart from
gaining understanding and theoretical control on layers,
considering kernel mappings allows for dealing with struc-
tured data, both in input and output, broadening the appli-
cability scope of networks. We finally expose works that en-
sure a finite dimensional parametrization of the model, ope-
ning the door to efficient optimization procedures for a wide
range of losses.

The second part of this thesis investigates alternatives to
the sample mean as substitutes to the expectation in the
Empirical Risk Minimization (ERM) paradigm. Indeed, ERM
implicitly assumes that the empirical mean is a good es-
timate of the expectation. However, in many practical use
cases (e.g. heavy-tailed distribution, presence of outliers,
biased training data), this is not the case.

The Median-of-Means (MoM) is a robust mean estimator
constructed as follows : the original dataset is split into dis-
joint blocks, empirical means on each block are computed,
and the median of these means is finally returned. We pro-
pose two extensions of MoM, both to randomized blocks
and/or U-statistics, with provable guarantees. By construc-
tion, MoM-like estimators exhibit interesting robustness pro-
perties. This is further exploited by the design of robust
learning strategies. The (randomized) MoM minimizers are
shown to be robust to outliers, while MoM tournament pro-
cedure are extended to the pairwise setting.

We close this thesis by proposing an ERM procedure tailo-
red to the sample bias issue. If training data comes from se-
veral biased samples, computing blindly the empirical mean
yields a biased estimate of the risk. Alternatively, from the
knowledge of the biasing functions, it is possible to reweight
observations so as to build an unbiased estimate of the test
distribution. We have then derived non-asymptotic guaran-
tees for the minimizers of the debiased risk estimate thus
created. The soundness of the approach is also empirically
endorsed.
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