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Median of Means (MoM)
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If x41,...,x, are n independent realizations of a r.v. X such that E|X]| = 6,
and Var(X) = o2, for any § € [e!="/2 1], choosing K = [log(1/4)] it holds:
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Bound using Hoeffding (or binomial law), with E[IZ] < o2/(Be?).

Motivations and Remarks

Randomization motivations Remarks on bound

e Classic alternative to segmentation e K is arbitrary (may exceed n)

e Natural in MoM Gradient Descent

e Extension to incomplete U-stats

e B is arbitrary (always > 1)
e Additional 7: tradeoff K/B

Possible extensions
e Other sampling schemes (Poisson, Monte Carlo) are more challenging as
they do not benefit from the B-degree U-statistic’s concentration.

e Extension to multivariate random variables (see geometric MoMs in [2])
is direct theoretically and cheap computationally.

Median of (Randomized) U-statistics

Blocks are formed either by partitioning or by SWoR. Complete U-
statistics are computed on each block. The medians of the (randomized)
U-statistics verify with probability at least 1 — o:
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with C7 and C5 only depending on h, C1(7) = C1/(27)2, Cao(7) = Cy/(27)°.

Extension to incomplete U-statistics made hard by replications in a block.

Estimation Experiments

Empirical deviation quantiles for estimations with MoRM (left, several 7
settings) and MoU (right, with incomplete versions also).
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Median of Randomized Means

If blocks are formed by SWoR, for any 7 €]0,1/2|, for any § € [26_872”/9, 1],
choosing K = [log(2/6)/(2(1/2—71)?)], B = |87°n/(91og(2/4))], it holds:

P{QMORM — 0] > 3v3 U\/log@/é)} < 0.
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U-statistics & Pairwise Learning

A natural estimate of E|h(X7, X3)|, with X; and X5 i.i.d. random vectors
and h symmetric, from an i.i.d. sample x4, ..., x, is the U-statistic
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Encountered e.q. in paitrwise ranking or in metric learning:
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Pairwise Tournament Procedure

Adapted from [1], we want to find f* € argmin R(f) = E[/(f, (X, X"))].
JeF

For f € F, let Hf := \/{(f, X, X"). For every candidates pair (f,g) € F*:

1) On a 1%" part of the sample, compute the MoU estimate of ||Hf — H,|| 1,
ds(f,g) = median (U1|Hf —H,|,...,Ug|H; — Hg\) .
2) If it is large enough, on a 224 part of the sample, compute the match
Vs (f,g) = median (lAfl(HJ% — ng), e (A]K/(H? — H;)) .

A candidate f winning all its matches verify w.p.a.l. 1—exp(con min{1,72})

R(f) = R(f*) <er.

Metric Learning Experiments

Standard (blue) and MoU (orange) gradient descents on a metric learning
problem for a sane (left) and a contaminated (right) dataset.
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