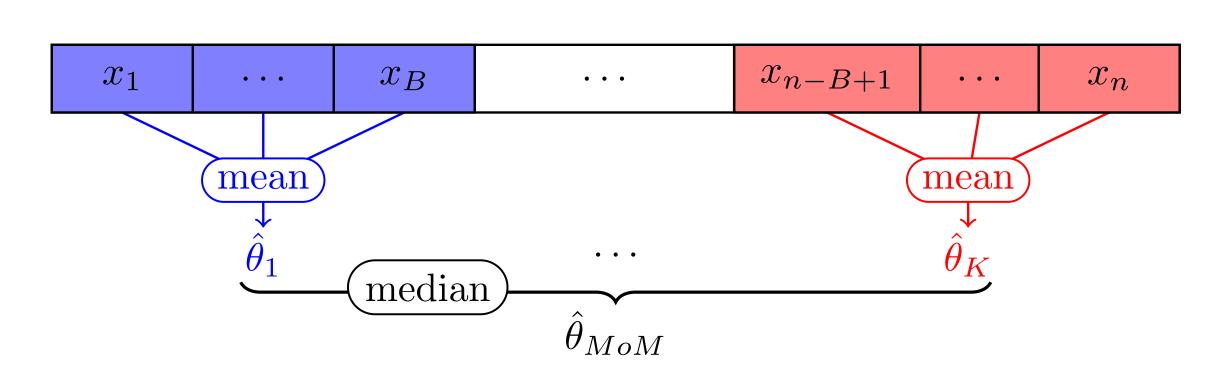


On Medians of (Randomized) Pairwise Means

P. Laforgue*, S. Clémençon*, P. Bertail[‡]

* LTCI, Télécom Paris, Institut Polytechnique de Paris, 75013, Paris, France [‡] Modal'X, Université Paris-Nanterre, 92001, Nanterre Cedex, France

Median of Means (MoM)



If x_1, \ldots, x_n are n independent realizations of a r.v. X such that $\mathbb{E}[X] = \theta$, and $\text{Var}(X) = \sigma^2$, for any $\delta \in [e^{1-n/2}, 1[$, choosing $K = \lceil \log(1/\delta) \rceil$ it holds:

$$\mathbb{P}\left\{ \left| \hat{\theta}_{\text{MoM}} - \theta \right| > 2\sqrt{2}e\sigma\sqrt{\frac{1 + \log(1/\delta)}{n}} \right\} \le \delta.$$

Proof: Let $I_k^{\varepsilon} := \mathbb{1}_{|\hat{\theta}_k - \theta| > \varepsilon}$, then $\mathbb{P}\{|\hat{\theta}_{\text{MoM}} - \theta| > \varepsilon\} \leq \mathbb{P}\{\sum_{k=1}^K I_k^{\varepsilon} \geq \frac{K}{2}\}$. Bound using Hoeffding (or binomial law), with $\mathbb{E}[I_k^{\varepsilon}] \leq \sigma^2/(B\varepsilon^2)$.

Motivations and Remarks

Randomization motivations

- Classic alternative to segmentation
- Natural in MoM Gradient Descent
- ullet Extension to incomplete U-stats

Remarks on bound

- K is arbitrary (may exceed n)
- B is arbitrary (always ≥ 1)
- Additional τ : tradeoff K/B

Possible extensions

- ullet Other sampling schemes (Poisson, Monte Carlo) are more challenging as they do not benefit from the B-degree U-statistic's concentration.
- Extension to multivariate random variables (see geometric MoMs in [2]) is direct theoretically and cheap computationally.

Median of (Randomized) U-statistics

Blocks are formed either by partitioning or by SWoR. Complete U-statistics are computed on each block. The medians of the (randomized) U-statistics verify with probability at least $1 - \delta$:

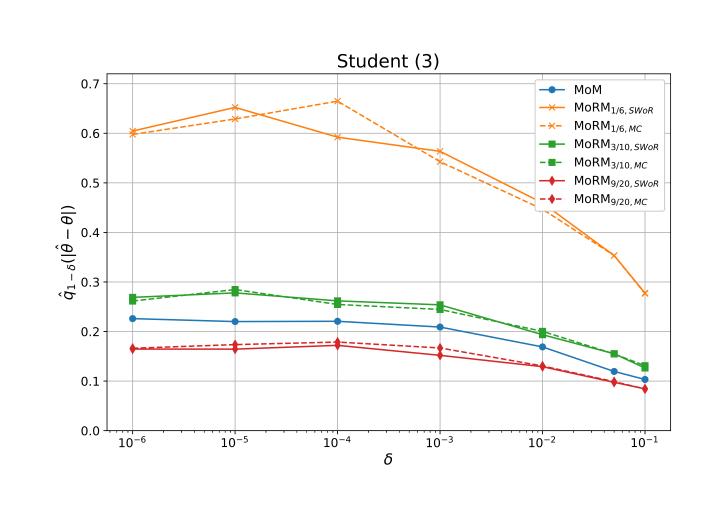
$$\left|\hat{\theta}_{\text{MoU}} - \theta(h)\right| \le \sqrt{\frac{C_1 \log \frac{1}{\delta}}{n} + \frac{C_2 \log^2(\frac{1}{\delta})}{n \left(2n - 9 \log \frac{1}{\delta}\right)}},$$

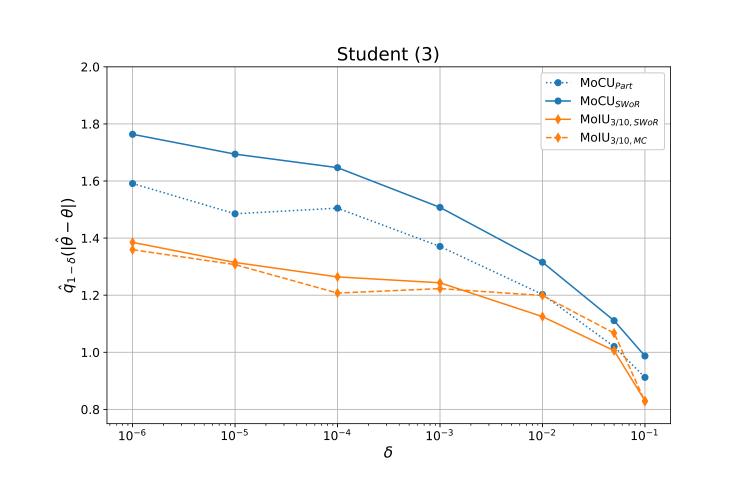
$$|\bar{\theta}_{\text{MoRU}} - \theta(h)| \le \sqrt{\frac{C_1(\tau)\log\frac{2}{\delta}}{n} + \frac{C_2(\tau)\log^2(\frac{2}{\delta})}{n(8n - 9\log\frac{2}{\delta})}},$$

with C_1 and C_2 only depending on h, $C_1(\tau) = C_1/(2\tau)^3$, $C_2(\tau) = C_2/(2\tau)^3$. Extension to incomplete U-statistics made hard by replications in a block.

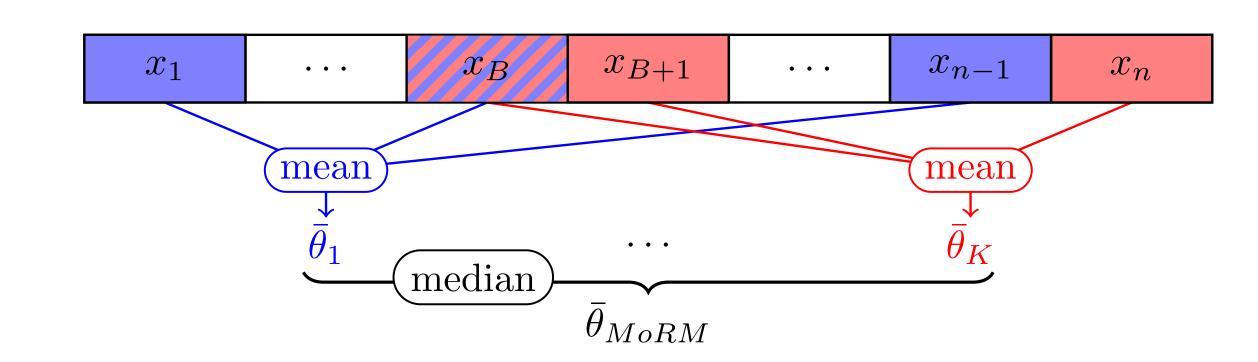
Estimation Experiments

Empirical deviation quantiles for estimations with MoRM (left, several τ settings) and MoU (right, with incomplete versions also).





Median of Randomized Means



If blocks are formed by SWoR, for any $\tau \in]0, 1/2[$, for any $\delta \in [2e^{-8\tau^2 n/9}, 1[$, choosing $K = \lceil \log(2/\delta)/(2(1/2-\tau)^2) \rceil$, $B = \lfloor 8\tau^2 n/(9\log(2/\delta)) \rfloor$, it holds:

$$\mathbb{P}\left\{\left|\bar{\theta}_{\text{MoRM}} - \theta\right| > \frac{3\sqrt{3} \sigma}{2 \tau^{3/2}} \sqrt{\frac{\log(2/\delta)}{n}}\right\} \leq \delta.$$

Proof: Let $\mathcal{I}_{k}^{\varepsilon} := \mathbb{1}_{|\bar{\theta}_{k} - \theta| > \varepsilon}$, $U_{n}^{\varepsilon} := \mathbb{E}_{\epsilon} [\frac{1}{K} \sum_{k=1}^{K} \mathcal{I}_{k}^{\varepsilon} \mid \mathcal{S}_{n}]$, and $p^{\varepsilon} := \mathbb{E}_{\mathcal{S}_{n}} [U_{n}^{\varepsilon}]$. Then $\mathbb{E}_{\mathcal{S}_{n}} [\mathbb{P}_{\epsilon} \{\frac{1}{K} \sum_{k=1}^{K} \mathcal{I}_{k}^{\varepsilon} - U_{n}^{\varepsilon} \ge \frac{1}{2} - \tau | \mathcal{S}_{n} \}]$, $\mathbb{P}_{\mathcal{S}_{n}} \{U_{n}^{\varepsilon} - p^{\varepsilon} \ge \tau - p^{\varepsilon}\}$.

U-statistics & Pairwise Learning

A natural estimate of $\mathbb{E}[h(X_1, X_2)]$, with X_1 and X_2 i.i.d. random vectors and h symmetric, from an i.i.d. sample x_1, \ldots, x_n is the U-statistic

$$U_n(h) = \frac{2}{n(n-1)} \sum_{1 \le i < j \le n} h(x_i, x_j).$$

Encountered e.g. in pairwise ranking or in metric learning:

$$\widehat{\mathcal{R}}_n(r) = \frac{2}{n(n-1)} \sum_{1 \le i < j \le n} \mathbb{1} \left\{ r(x_i, x_j) \cdot (y_i - y_j) \le 0 \right\},\,$$

$$\widehat{\mathcal{R}}_n(d) = \frac{2}{n(n-1)} \sum_{1 \le i \le j \le n} \mathbb{1} \left\{ y_{ij} \cdot (d^2(x_i, x_j) - \epsilon) \ge 0 \right\}.$$

Pairwise Tournament Procedure

Adapted from [1], we want to find $f^* \in \underset{f \in \mathcal{F}}{\operatorname{argmin}} \mathcal{R}(f) = \mathbb{E}[\ell(f, (X, X'))].$ For $f \in \mathcal{F}$, let $H_f := \sqrt{\ell(f, X, X')}$. For every candidates pair $(f, g) \in \mathcal{F}^2$:

1) On a 1st part of the sample, compute the MoU estimate of $||H_f - H_g||_{L_1}$

$$\Phi_{\mathcal{S}}(f,g) = \operatorname{median}\left(\hat{U}_1|H_f - H_g|, \dots, \hat{U}_K|H_f - H_g|\right).$$

2) If it is large enough, on a 2^{nd} part of the sample, compute the match

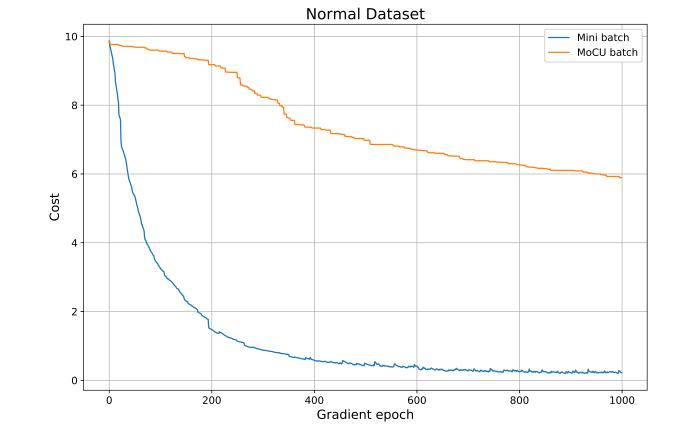
$$\Psi_{\mathcal{S}'}(f,g) = \text{median}\left(\hat{U}_1(H_f^2 - H_g^2), \dots, \hat{U}_{K'}(H_f^2 - H_g^2)\right).$$

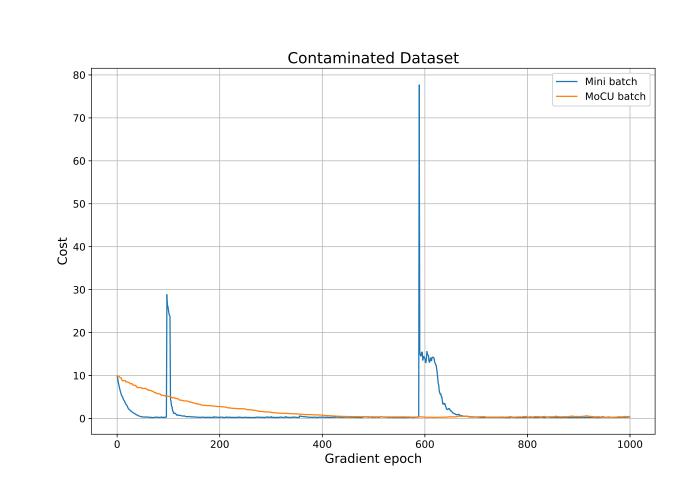
A candidate \hat{f} winning all its matches verify w.p.a.l. $1-\exp(c_0n\min\{1,r^2\})$

$$\mathcal{R}(\hat{f}) - \mathcal{R}(f^*) \le cr.$$

Metric Learning Experiments

Standard (blue) and MoU (orange) gradient descents on a metric learning problem for a sane (left) and a contaminated (right) dataset.





References

- G. Lugosi and S. Mendelson. Risk minimization by median-of-means tournaments. $arXiv\ preprint\ arXiv:1608.00757,\ 2016.$
- [2] S. Minsker et al. Geometric Median and Robust Estimation in Banach Spaces. Bernoulli, 21(4):2308–2335, 2015.