On Medians of (Randomized) Pairwise Means

P. Laforgue ${ }^{\star}$, S. Clémençon ${ }^{\star}$, P. Bertail ${ }^{\ddagger}$

* LTCI, Télécom Paris, Institut Polytechnique de Paris, 75013, Paris, France
${ }^{\ddagger}$ Modal’X, Université Paris-Nanterre, 92001, Nanterre Cedex, France

Median of Means (MoM)

If x_{1}, \ldots, x_{n} are n independent realizations of a r.v. X such that $\mathbb{E}[X]=\theta$, and $\operatorname{Var}(X)=\sigma^{2}$, for any $\delta \in\left[e^{1-n / 2}, 1[\right.$, choosing $K=\lceil\log (1 / \delta)\rceil$ it holds:

$$
\mathbb{P}\left\{\left|\hat{\theta}_{\mathrm{MoM}}-\theta\right|>2 \sqrt{2} e \sigma \sqrt{\frac{1+\log (1 / \delta)}{n}}\right\} \leq \delta .
$$

Proof: Let $I_{k}^{\varepsilon}:=\mathbb{1}_{\left|\hat{\theta}_{k}-\theta\right|>\varepsilon}$, then $\mathbb{P}\left\{\left|\hat{\theta}_{\mathrm{MoM}}-\theta\right|>\varepsilon\right\} \leq \mathbb{P}\left\{\sum_{k=1}^{K} I_{k}^{\varepsilon} \geq \frac{K}{2}\right\}$.
Bound using Hoeffding (or binomial law), with $\mathbb{E}\left[I_{k}^{\varepsilon}\right] \leq \sigma^{2} /\left(B \varepsilon^{2}\right)$.

Motivations and Remarks

Randomization motivations

Remarks on bound

- Classic alternative to segmentation
- K is arbitrary (may exceed n)
- Natural in MoM Gradient Descent
- B is arbitrary (always ≥ 1)
- Extension to incomplete U-stats
- Additional τ : tradeoff K / B

Possible extensions

- Other sampling schemes (Poisson, Monte Carlo) are more challenging as they do not benefit from the B-degree U-statistic's concentration.
- Extension to multivariate random variables (see geometric MoMs in [2]) is direct theoretically and cheap computationally.

Median of (Randomized) U-statistics

Blocks are formed either by partitioning or by SWoR. Complete U statistics are computed on each block. The medians of the (randomized) U-statistics verify with probability at least $1-\delta$:

$$
\begin{aligned}
& \left|\hat{\theta}_{\mathrm{MoU}}-\theta(h)\right| \leq \sqrt{\frac{C_{1} \log \frac{1}{\delta}}{n}+\frac{C_{2} \log ^{2}\left(\frac{1}{\delta}\right)}{n\left(2 n-9 \log \frac{1}{\delta}\right)}}, \\
& \left|\bar{\theta}_{\mathrm{MoRU}}-\theta(h)\right| \leq \sqrt{\frac{C_{1}(\tau) \log \frac{2}{\delta}}{n}+\frac{C_{2}(\tau) \log ^{2}\left(\frac{2}{\delta}\right)}{n\left(8 n-9 \log \frac{2}{\delta}\right)}},
\end{aligned}
$$

with C_{1} and C_{2} only depending on $h, C_{1}(\tau)=C_{1} /(2 \tau)^{3}, C_{2}(\tau)=C_{2} /(2 \tau)^{3}$. Extension to incomplete U-statistics made hard by replications in a block.

Estimation Experiments

Empirical deviation quantiles for estimations with MoRM (left, several τ settings) and MoU (right, with incomplete versions also).

Median of Randomized Means

If blocks are formed by SWoR, for any $\tau \in] 0,1 / 2\left[\right.$, for any $\delta \in\left[2 e^{-8 \tau^{2} n / 9}, 1[\right.$, choosing $K=\left\lceil\log (2 / \delta) /\left(2(1 / 2-\tau)^{2}\right)\right\rceil, B=\left\lfloor 8 \tau^{2} n /(9 \log (2 / \delta))\right\rfloor$, it holds:

$$
\mathbb{P}\left\{\left|\bar{\theta}_{\mathrm{MoRM}}-\theta\right|>\frac{3 \sqrt{3} \sigma}{2 \tau^{3 / 2}} \sqrt{\frac{\log (2 / \delta)}{n}}\right\} \leq \delta
$$

Proof: Let $\mathcal{I}_{k}^{\varepsilon}:=\mathbb{1}_{\left|\bar{\theta}_{k}-\theta\right|>\varepsilon}, U_{n}^{\varepsilon}:=\mathbb{E}_{\epsilon}\left[\left.\frac{1}{K} \sum_{k=1}^{K} \mathcal{I}_{k}^{\varepsilon} \right\rvert\, \mathcal{S}_{n}\right]$, and $p^{\varepsilon}:=\mathbb{E}_{\mathcal{S}_{n}}\left[U_{n}^{\varepsilon}\right]$.
Then $\mathbb{E}_{\mathcal{S}_{n}}\left[\mathbb{P}_{\epsilon}\left\{\left.\frac{1}{K} \sum_{k=1}^{K} \mathcal{I}_{k}^{\varepsilon}-U_{n}^{\varepsilon} \geq \frac{1}{2}-\tau \right\rvert\, \mathcal{S}_{n}\right\}\right], \mathbb{P}_{\mathcal{S}_{n}}\left\{U_{n}^{\varepsilon}-p^{\varepsilon} \geq \tau-p^{\varepsilon}\right\}$.

U-statistics \& Pairwise Learning

A natural estimate of $\mathbb{E}\left[h\left(X_{1}, X_{2}\right)\right]$, with X_{1} and X_{2} i.i.d. random vectors and h symmetric, from an i.i.d. sample x_{1}, \ldots, x_{n} is the U-statistic

$$
U_{n}(h)=\frac{2}{n(n-1)} \sum_{1 \leq i<j \leq n} h\left(x_{i}, x_{j}\right)
$$

Encountered e.g. in pairwise ranking or in metric learning:

$$
\begin{aligned}
& \widehat{\mathcal{R}}_{n}(r)=\frac{2}{n(n-1)} \sum_{1 \leq i<j \leq n} \mathbb{1}\left\{r\left(x_{i}, x_{j}\right) \cdot\left(y_{i}-y_{j}\right) \leq 0\right\}, \\
& \widehat{\mathcal{R}}_{n}(d)=\frac{2}{n(n-1)} \sum_{1 \leq i<j \leq n} \mathbb{1}\left\{y_{i j} \cdot\left(d^{2}\left(x_{i}, x_{j}\right)-\epsilon\right) \geq 0\right\} .
\end{aligned}
$$

Pairwise Tournament Procedure

Adapted from [1], we want to find $f^{*} \in \underset{f \in \mathcal{F}}{\operatorname{argmin}} \mathcal{R}(f)=\mathbb{E}\left[\ell\left(f,\left(X, X^{\prime}\right)\right)\right]$. For $f \in \mathcal{F}$, let $H_{f}:=\sqrt{\ell\left(f, X, X^{\prime}\right)}$. For every candidates pair $(f, g) \in \mathcal{F}^{2}$:

1) On a $1^{\text {st }}$ part of the sample, compute the MoU estimate of $\left\|H_{f}-H_{g}\right\|_{L_{1}}$

$$
\Phi_{\mathcal{S}}(f, g)=\operatorname{median}\left(\hat{U}_{1}\left|H_{f}-H_{g}\right|, \ldots, \hat{U}_{K}\left|H_{f}-H_{g}\right|\right)
$$

2) If it is large enough, on a $2^{\text {nd }}$ part of the sample, compute the match

$$
\Psi_{\mathcal{S}^{\prime}}(f, g)=\operatorname{median}\left(\hat{U}_{1}\left(H_{f}^{2}-H_{g}^{2}\right), \ldots, \hat{U}_{K^{\prime}}\left(H_{f}^{2}-H_{g}^{2}\right)\right)
$$

A candidate \hat{f} winning all its matches verify w.p.a.l. $1-\exp \left(c_{0} n \min \left\{1, r^{2}\right\}\right)$

$$
\mathcal{R}(\hat{f})-\mathcal{R}\left(f^{*}\right) \leq c r
$$

Metric Learning Experiments

Standard (blue) and MoU (orange) gradient descents on a metric learning problem for a sane (left) and a contaminated (right) dataset.

References

[1] G. Lugosi and S. Mendelson. Risk minimization by median-of-means tournaments. arXiv preprint arXiv:1608.00757, 2016.
[2] S. Minsker et al. Geometric Median and Robust Estimation in Banach Spaces. Bernoulli, 21(4):2308-2335, 2015.

