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Introduction



Empirical Risk Minimization (ERM)

General goal of supervised machine learning:
From a r.v. Z = (X ,Y ), and a loss function ` : Y × Y → R, find:

h∗ = argmin
h measurable

R(h) = EP [`(h(X ),Y )] .

Empirical Risk Minimization (ERM):

• P is unknown (and the set of measurable functions too large)
• sample (X1,Y1), . . . , (Xn,Yn) i .i .d∼ P, hypothesis set H

ĥn = argmin
h∈H

1
n

n∑
i=1

`(h(Xi ),Yi ) = EP̂n
[`(h(X ),Y )] ,

with P̂n = 1
n
∑

i δZi , and Zi = (Xi ,Yi ). It holds P̂n →
n→+∞

P.
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Importance Sampling (IS)

What if the data is not drawn from P?

Sample (X1,Y1), . . . , (Xn,Yn) i .i .d∼ Q such that dQ
dP (z) = q(z)

p(z) .

Now 1
n
∑

i δZi = Q̂n →
n→+∞

Q.
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Importance Sampling (IS)

What if the data is not drawn from P?

Sample (X1,Y1), . . . , (Xn,Yn) i .i .d∼ Q such that dQ
dP (z) = q(z)

p(z) .

Now 1
n
∑

i δZi = Q̂n →
n→+∞

Q.

q(x)/p(x) = 1/2.

min
h∈H

1
n

n∑
i=1

`(h(Xi ),Yi ) ·
p(Zi )
q(Zi )

min
h∈H

EQ̂n

[
`(h(X),Y ) ·

p(Z)
q(Z)

]
↓

EQ

[
`(h(X),Y ) ·

p(Z)
q(Z)

]
= EP [`(h(X),Y )]

3



Importance Sampling (IS)

What if the data is not drawn from P?

Sample (X1,Y1), . . . , (Xn,Yn) i .i .d∼ Q such that dQ
dP (z) = q(z)

p(z) .

Now 1
n
∑

i δZi = Q̂n →
n→+∞

Q.

q(x)/p(x) = I{15 ≤ x ≤ 55}.

min
h∈H

1
n

n∑
i=1

`(h(Xi ),Yi ) ·
p(Zi )
q(Zi )

min
h∈H

EQ̂n

[
`(h(X),Y ) ·

p(Z)
q(Z)

]
not possible!

↓
EQ

[
`(h(X),Y ) ·

p(Z)
q(Z)

]
= EP [`(h(X),Y )]
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Adding samples

q1(x)/p(x) = I{15 ≤ x ≤ 55}

We need:
K⋃

k=1
Supp(qk) = Supp(p).

Sample-wise IS doe not work because of samples proportions.
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Adding samples

q1(x)/p(x) = I{15 ≤ x ≤ 55}

q2(x)/p(x) = I{50 ≤ x ≤ 70}

We need:
K⋃

k=1
Supp(qk) = Supp(p).

Sample-wise IS doe not work because of samples proportions.
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Adding samples

q1(x)/p(x) = I{15 ≤ x ≤ 55}

q2(x)/p(x) = I{50 ≤ x ≤ 70}

q3(x)/p(x) = I{x ≤ 20}+ I{x ≥ 60}

We need:
K⋃

k=1
Supp(qk) = Supp(p).

Sample-wise IS doe not work because of samples proportions.
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Theoretical Analysis



Setting and assumptions

• K independent i.i.d. samples Dk = {Zk,1, . . . , Zk,nk}
• n =

∑
k nk , λ̂k = nk/n for k ≤ K

• sample k drawn according to Qk such that dQk
dP (z) = ωk (z)

Ωk

• The Ωk = EP [ωk(Z )] =
∫
Z ωk(z)P(dz) are unknown.

• ∃C , λ, λ1, . . . , λK > 0, |λk − λ̂k | ≤ C√
n and λ ≤ λ̂k .

• The graph Gκ is connected.
• ∃ξ > 0, ∀k ≤ K , Ωk ≥ ξ.
• ∃m,M > 0, m ≤ inf

z
max
k≤K

ωk(z) and sup
z

max
k≤K

ωk(z) ≤ M.
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Building an unbiased estimate of P (1/2)

Without considering the bias issue:

Q̂n = 1
n

n∑
i=1

δZi =
K∑

k=1

nk
n

1
nk

∑
i∈Dk

δZi →
K∑

k=1
λkQk 6= P.

But it holds:

dQk = ωk
Ωk

dP,
∑

k
λ̂kdQk =

∑
k

λ̂kωk
Ωk

dP

dP =
(∑

k

λ̂kωk
Ωk

)−1∑
k
λ̂kdQk (1)

We only need to estimate the Ωk ’s.
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Building an unbiased estimate of P (1/2)

It holds:

Ωk =
∫
ωkdP =

∫ (∑
k

λkωk
Ωk

)−1∑
k
λkωkdQk .

Ω̂ solution to the system:

∀k ≤ K , Ĥk(Ω)− 1 = 0,

with Ĥk(Ω) =
∫ (∑

k

λ̂kωk
Ωk

)−1∑
k
λ̂kωkdQ̂k .

The final estimate is obtained by plugging Ω̂ in Equation (1).

10



Non-asymptotic guarantees

Debiasing procedure due to [Vardi’85] and [Gill’88], but only
asymptotic results.

With P̂n =
(∑

k
λ̂kωk

Ω̂k

)−1∑
k λ̂kdQ̂k , there exists (πi )i≤n such that:

EP̂n
[`(h(X ),Y )] =

n∑
i=1

πi · `(h(Xi ),Yi ), (2)

and ĥn minimizer of Equation (2) satisfies with probability 1− δ:

R(ĥn)− R(h∗) ≤ C1

√
K 3

n + C2

√
K log n

n + C3

√
K log 1/δ

n .
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Empirical Results



Experiments on the Adult dataset
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Dataset of size 6, 000: 98% from 13+ years of education, 2% unbiased. Scores:

LogReg RF

ERM 63.95 ± 1.37 42.73 ± 3.36
db-ERM 79.77 ± 1.72 43.58 ± 4.77

unbiased sample 77.75 ± 2.27 22.16 ± 6.18
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Conclusion

• Very general procedure to deal with sample bias issues

• Non-asymptotic guarantees as if non-biased sample at disposal

• Apply to any ERM algorithm (Logistic Regression, RFs, NNs)

• Easy and cheap implementation: scikit-learn’s sample weight

• Future work on approximating the biasing functions ωk ’s
(partially funded by the industrial chair Good in Tech)

• Preprint available at: arxiv/1906.12304

• Code available at: https://github.com/plaforgue/db learn

13

https://arxiv.org/abs/1906.12304
https://github.com/plaforgue/db_learn

	Introduction
	Theoretical Analysis
	Empirical Results

