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Online Multitask Learning: Motivations

= Datastreams are ubiquitous: markets, sensors, user interactions

= Many problems are multitask: stock predictions, federated learning
for mobile users, for smart homes, weather forecasting

= Is it possible to improve when we face similar tasks?

Partial yes in [Cavallanti et al. 2010] (specific algorithm, loss, geometry)



Online Convex Optimization (single task)

At each time step t = 1,..., T, the learner:

1. makes a prediction x, € V C R9,
2. receives a convex loss function /;: V — R,

3. pays /;(x;), and uses the knowledge of ¢; for the next predictions.

Given a sequence of losses /; (possibly arbitrary), the goal is to minimize
the regret, defined as:

N————
best model in hindsight



Online Mirror Descent (1/2)

Given : RY — R, A-strongly convex w.r.t. norm || - || on V, the OMD
update writes:

Xep1 = argrr\1/in (nege, x) + By(x, x¢) (1)
S

where g; € 00:(x;), and By(x,y) = ¥(x) —¥(y) — (Vi (y), x — y).

For n: '=n and any x; € V, it can be shown that the sequence of
iterates produced by (1) satisfies:
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Online Mirror Descent (2/2)

B (u,x1) >
Vue V. Rr(u) < =5 ZXE:HgM

Two famous instances of OMD are Online Gradient Descent (OGD) and
Exponentiated Gradient (EG).
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Online Multitask Learning: A Multiagent Formalism

N agents, each trying to solve its own task. At time step t, agent i; is
active (arbitrary chosen). Our goal is to minimize the multitask regret:

Rt = Z ( Z le(xe) — Jren“/ Z Et(u)>

i=1 tooip=i t:oip=i
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Online Multitask Learni A Multiagent Formalism

N agents, each trying to solve its own task. At time step t, agent i; is
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Naive Approach: Independent OMDs

If individual OMD has regret bounded by Cv/T, by Jensen’s inequality:

N
Rr <> CVT < CVNT.
i=1

Is it possible to improve with respect to the /N dependence? Yes

How? Under which condition on the tasks? on 7



Our approach: Multitask OMD

How? By sharing gradients between agents
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Multitask OMD: our approach

How? By sharing gradients between agents
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MT-OMD: Analysis

Let Ac RVXN A= A® I; € RV¥XNI For a regularizer ¢v: R? — R, let

N
YrueRY = p), o ue RV - (A )

i=1



MT-OMD: Analysis

We have By (x,y) = B,/,(Al/zx,Al/zy), so the MT-OMD update writes:

Xep1 = argmin (08¢, X) + Bw(A1/2X.,A1/2xt)
xeV

=AY argmin (0.A g, y) + By(y.y,)
yeAY/2(V)



MT-OMD: Analysis

We have shown that

1/2 12,
VueRY, Rr(u)<?Z w(ATu, A )+77 max A; 12 Hgtll*
U




Multitask OGD (1/2)

Instantiating the previous bound for MT-OGD () = || - [|3), we obtain:

Nd (u—x1)"A(u — x1) 1 ||gt||2
Vu e R Rr(u) < 5 + 1 max Ay Z

If A=+ b Iy~ L") (and x1 = 0), we obtain:

N
ulAu= |lul3+b)_ ||u? —al?
i=1

= ||lu||3 + b(N — 1) Var(u)

and



Multitask OGD (2/2)

Under which condition? Tasks have a small variance

Let V ={uecR?: ||ull, <D}
V={uecRY: |uD|, <D Vi< N}
V, ={uc V: Var(u) < 0°D?}

For all u € V, we have:

ND*(1 + b820®)  n(b+ N) Z ||gt||2
2n (14 b)N

< DLg\/1+ 02(N—1)V2T

after optimizing 7 and b. Recall that independent OGDs give DLV NT.
Nicely interpolates between the extreme cases 0 =0 and o = 1.

YuecRY Ry(u) <

10



Matching Lower Bound / Separation Result

For any algorithm

Rt >

DLg\/1+ 02(N —1)V2T) .
( )

A=



Extension to Any Norm

If
1 N : 2
Var(u) = = ; lu® —a]",
then
Rr(u) < DLg\/1+ 02(N —1)V8T.
In particular,

Rr(u) < Lgy/1+ 02(N —1)V16eTInd.
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Multitask EG (1/2)

Recall that A=y + b (I — 15").

For ¢ = 3| - |3, By(A?u,0) =S [uD|3 + b Var(u)

For v(x) = 2, Inx;,  By(A2u,5) < Nind, for all A”?u e A

Plugging and optimizing 7 yields for MT-EG:

2(b+ N
Rr <L, %\/de
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Multitask EG (2/2)

2(b+ N
Rr <L, %\/Tlnd

But (AY2u)() = T+ bul) + (1 - V1 + b)a.
We should choose b* = max{b > 0: A?2u c A}.

max min \ 2
T ]

Let Vara(u) = maxj<qg (uJUTXJ) . For every u € A such that
Jj

Vara(u) < o2, choosing b = 1;32 yields:

R < Lg\/14+02(N—1)V2TInd.
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Experiments (1/2)

Both MT-OGD and MT-EG enjoy closed form updates. Experiments
show an improvement upon both Independent Task OMD (IT-OMD,
b = 0) and Single Task OMD (ST-OMD, b = +o0).

80

60]

40

20

0 500 1000 1500 2000 2500 3000 0 1000 2000 3000 4000 5000

Cumulative losses for MT-OGD on the lenk dataset (left) and cumulative
wealth for MT-EG on the NYSE dataset (right).
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Experiments (2/2)

Regret against task standard deviation o (in accordance with the
upper/lower bounds).
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Conclusion

= MT-OMD induces the multitask acceleration:

Vi+o2(N-1) VS. VN

= How? By sharing gradients between agents, ¢ = 1/:(A1/2-)
= Under which condition? Task variance ¢2 < 1

= Enjoy closed form updates for MT-OGD and MT-EG

= The multitask acceleration is orthogonal to other kinds of
refinements (g-norms, adaptive learning rates, smooth losses)

= Limitation: requires the knowledge of o
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On the choice of A

A= (1+b)ly — 2117 can actually be rewritten A = [y + bLcave.

If A= Iy + bL® for a generic graph G, with weight matrix W, we have:

ulAu = [lul3 + 5 Wyllut® — a3

]

Allows to encode more precise knowledge about the task variance.
But the computation of A;l has to be done on a case by case basis.
Works also for the variance definition on the probability simplex A.

18



