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Online Multitask Learning: Motivations

• Datastreams are ubiquitous: markets, sensors, user interactions
• Many problems are multitask: stock predictions, federated learning

for mobile users, for smart homes, weather forecasting
• Is it possible to improve when we face similar tasks?

Partial yes in [Cavallanti et al. 2010] (specific algorithm, loss, geometry)
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Online Convex Optimization (single task)

At each time step t = 1, . . . ,T , the learner:

1. makes a prediction xt ∈ V ⊂ Rd ,
2. receives a convex loss function `t : V → R,
3. pays `t(xt), and uses the knowledge of `t for the next predictions.

Given a sequence of losses `t (possibly arbitrary), the goal is to minimize
the regret, defined as:

RT =
T∑

t=1
`t(xt)− inf

u∈V

T∑
t=1

`t(u)︸ ︷︷ ︸
best model in hindsight
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Online Mirror Descent (1/2)

Given ψ : Rd → R, λ-strongly convex w.r.t. norm ‖ · ‖ on V , the OMD
update writes:

xt+1 = argmin
x∈V

〈ηtgt , x〉+ Bψ(x , xt) (1)

where gt ∈ ∂`t(xt), and Bψ(x , y) = ψ(x)− ψ(y)− 〈∇ψ(y), x − y〉.

For ηt := η and any x1 ∈ V , it can be shown that the sequence of
iterates produced by (1) satisfies:

∀u ∈ V , RT (u) ≤ Bψ(u, x1)
η

+ η

2λ

T∑
t=1
‖gt‖2

?
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Online Mirror Descent (2/2)

∀u ∈ V , RT (u) ≤ Bψ(u, x1)
η

+ η

2λ

T∑
t=1
‖gt‖2

?

Two famous instances of OMD are Online Gradient Descent (OGD) and
Exponentiated Gradient (EG).

OGD EG
ψ(x) 1

2‖x‖
2
2

∑d
j=1 xj ln xj

λ, ‖ · ‖, ‖ · ‖? 1, ‖ · ‖2, ‖ · ‖2 1, ‖ · ‖1, ‖ · ‖∞

Bψ(x , y) 1
2‖x − y‖2

2
∑d

j=1 xj ln
(

xj
yj

)
RT on the simplex

O(
√

Td) O(
√

T ln d)with ‖gt‖∞ ≤ 1
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Online Multitask Learning: A Multiagent Formalism

N agents, each trying to solve its own task. At time step t, agent it is
active (arbitrary chosen). Our goal is to minimize the multitask regret:

RT =
N∑

i=1

( ∑
t : it =i

`t(xt)− inf
u∈V

∑
t : it =i

`t(u)
)
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Naive Approach: Independent OMDs

If individual OMD has regret bounded by C
√

T , by Jensen’s inequality:

RT ≤
N∑

i=1
C
√

Ti ≤ C
√

NT .

Is it possible to improve with respect to the
√

N dependence? Yes

How? Under which condition on the tasks? on ψ?
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Our approach: Multitask OMD

How? By sharing gradients between agents
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MT-OMD: Analysis

Let A ∈ RN×N , A = A⊗ Id ∈ RNd×Nd . For a regularizer ψ : Rd → R, let

ψ : u ∈ RNd 7→
N∑

i=1
ψ(u(i)), ψ̃ : u ∈ RNd 7→ ψ(A1/2u)

We have Bψ̃(x, y) = Bψ(A1/2x,A1/2y), so the MT-OMD update writes:

xt+1 = argmin
x∈V

〈ηt ḡt , x〉+ Bψ(A1/2x,A1/2xt)

= A−1/2 argmin
y∈A1/2(V )

〈ηtA−1/2ḡt , y〉+ Bψ(y , y t)

We have shown that:

∀u ∈ RNd , RT (u) ≤ Bψ(A1/2u,A1/2x1)
η

+ η max
i≤N

A−1
ii

T∑
t=1

‖gt‖2
?

2λ
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Multitask OGD (1/2)

Instantiating the previous bound for MT-OGD (ψ = 1
2‖ · ‖

2
2), we obtain:

∀u ∈ RNd , RT (u) ≤ (u − x1)>A(u − x1)
2η + η max

i≤N
A−1

ii

T∑
t=1

‖gt‖2
2

2λ

If A = IN + b
(

IN − 11
>

N

)
(and x1 = 0), we obtain:

u>Au = ‖u‖2
2 + b

N∑
i=1
‖u(i) − ū‖2

2

= ‖u‖2
2 + b(N − 1)Var(u)

and
max
i≤N

A−1
ii = b + N

(1 + b)N
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Multitask OGD (2/2)

Under which condition? Tasks have a small variance

Let V = {u ∈ Rd : ‖u‖2 ≤ D}
V = {u ∈ RNd : ‖u(i)‖2 ≤ D ∀i ≤ N}

V σ = {u ∈ V : Var(u) ≤ σ2D2}

For all u ∈ V σ we have:

∀u ∈ RNd , RT (u) ≤
ND2(1 + b N−1

N σ2)
2η + η(b + N)

(1 + b)N

T∑
t=1

‖gt‖2
2

2λ

≤ DLg
√

1 + σ2(N − 1)
√

2T

after optimizing η and b. Recall that independent OGDs give DLg
√

NT .
Nicely interpolates between the extreme cases σ = 0 and σ = 1.
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Matching Lower Bound / Separation Result

For any algorithm

RT ≥
1
4
(

DLg
√

1 + σ2(N − 1)
√

2T
)
.
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Extension to Any Norm

If

Var‖·‖(u) = 1
N − 1

N∑
i=1

∥∥u(i) − ū
∥∥2
,

then
RT (u) ≤ DLg

√
1 + σ2(N − 1)

√
8T .

In particular,

RT (u) ≤ Lg
√

1 + σ2(N − 1)
√

16eT ln d .
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Multitask EG (1/2)

Recall that A = IN + b
(

IN − 11
>

N

)
.

For ψ = 1
2‖ · ‖

2
2, Bψ(A1/2u, 0) =

∑N
i=1 ‖u(i)‖2

2 + b Var(u)

For ψ(x) =
∑

j xj ln xj , Bψ(A1/2u, 1d ) ≤ N ln d , for all A1/2u ∈∆

Plugging and optimizing η yields for MT-EG:

RT ≤ Lg

√
2(b + N)

b + 1
√

T ln d
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Multitask EG (2/2)

RT ≤ Lg

√
2(b + N)

b + 1
√

T ln d

But (A1/2u)(i) =
√

1 + bu(i) + (1−
√

1 + b)ū.

We should choose b∗ = max{b ≥ 0: A1/2u ∈∆}.

Let Var∆(u) = maxj≤d

(
umax

j −umin
j

umax
j

)2
. For every u ∈ ∆ such that

Var∆(u) ≤ σ2, choosing b = 1−σ2

σ2 yields:

RT ≤ Lg
√

1 + σ2(N − 1)
√

2T ln d .
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Experiments (1/2)

Both MT-OGD and MT-EG enjoy closed form updates. Experiments
show an improvement upon both Independent Task OMD (IT-OMD,
b = 0) and Single Task OMD (ST-OMD, b = +∞).

Cumulative losses for MT-OGD on the lenk dataset (left) and cumulative
wealth for MT-EG on the NYSE dataset (right).
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Experiments (2/2)

Regret against task standard deviation σ (in accordance with the
upper/lower bounds).
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Conclusion

• MT-OMD induces the multitask acceleration:√
1 + σ2(N − 1) VS.

√
N

• How? By sharing gradients between agents, ψ̃ = ψ(A1/2·)

• Under which condition? Task variance σ2 ≤ 1

• Enjoy closed form updates for MT-OGD and MT-EG

• The multitask acceleration is orthogonal to other kinds of
refinements (q-norms, adaptive learning rates, smooth losses)

• Limitation: requires the knowledge of σ2
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On the choice of A

A = (1 + b)IN − b
N11

> can actually be rewritten A = IN + bLclique .

If A = IN + bLG for a generic graph G , with weight matrix W , we have:

u>Au = ‖u‖2
2 + b

∑
i,j

Wij‖u(i) − u(j)‖2
2

Allows to encode more precise knowledge about the task variance.
But the computation of A−1

ii has to be done on a case by case basis.
Works also for the variance definition on the probability simplex ∆.

18


