Publications

Please find below my list of publications, organized by topic. See also my Google Scholar.

Online Learning and Bandits

  • Linear Bandits with Memory (TMLR, 2024)
    Giulia Clerici, Pierre Laforgue, Nicolò Cesa-Bianchi  [paper, code]

  • Multitask Online Learning: Listen to the Neighborhood Buzz (AISTATS 2024)
    Juliette Achddou, Nicolò Cesa-Bianchi, Pierre Laforgue  [paper]

  • Multitask Learning with No Regret: from Improved Confidence Bounds to Active Learning (NeurIPS 2023)
    Pier Giuseppe Sessa, Pierre Laforgue, Nicolò Cesa-Bianchi, Andreas Krause  [paper, code]

  • Multitask Online Mirror Descent (TMLR, 2022)
    Nicolò Cesa-Bianchi, Pierre Laforgue, Andrea Paudice, Massimiliano Pontil  [paper, slides]

  • A Last Switch Dependent Analysis of Satiation and Seasonality in Bandits (AISTATS 2022)
    Pierre Laforgue, Giulia Clerici, Nicolò Cesa-Bianchi, Ran Gilad-Bachrach  [paper, code]

Kernel Methods and Sketching

  • Deep Sketched Output Kernel Regression for Structured Prediction (ECML 2024)
    Tamim El Ahmad, Junjie Yang, Pierre Laforgue, Florence d'Alché-Buc  [paper, code]

  • Sketch In, Sketch Out: Accelerating both Learning and Inference for Structured Prediction with Kernels (AISTATS 2024)
    Tamim El Ahmad, Luc Brogat-Motte, Pierre Laforgue, Florence d'Alché-Buc  [paper]

  • Fast Kernel Methods for Generic Lipschitz Losses via p-Sparsified Sketches (TMLR, 2023)
    Tamim El Ahmad, Pierre Laforgue, Florence d'Alché-Buc  [paper]

  • Duality in RKHSs with Infinite Dimensional Outputs: Application to Robust Losses (ICML 2020)
    Pierre Laforgue, Alex Lambert, Luc Brogat-Motte, Florence d'Alché-Buc  [paper, slides]

  • Autoencoding any Data through Kernel Autoencoders (AISTATS 2019)
    Pierre Laforgue, Stephan Clémençon, Florence d'Alché-Buc  [paper, code, poster, slides]

Robust Learning and Median-of-Means

  • Generalization Bounds in the Presence of Outliers: a Median-of-Means Study (ICML 2021)
    Pierre Laforgue, Guillaume Staerman, Stephan Clémençon  [paper, poster, slides]

  • When OT meets MoM: Robust estimation of Wasserstein Distance (AISTATS 2021)
    Guillaume Staerman, Pierre Laforgue, Pavlo Mozharovskyi, Florence d'Alché-Buc  [paper, code]

  • On Medians-of-(Randomized)-Pairwise-Means (ICML 2019)
    Pierre Laforgue, Stephan Clémençon, Patrice Bertail  [paper, code, poster, slides]

Statistical Learning and Selection Bias

  • Fighting Selection Bias in Statistical Learning: Application to Visual Recognition from Biased Image Databases (Journal of Nonparametric Statistics, 2023)
    Stephan Clémençon, Pierre Laforgue, Robin Vogel  [paper]

  • Statistical Learning from Biased Training Samples (Electronic Journal of Statistics, 2022)
    Stephan Clémençon, Pierre Laforgue  [paper, code, slides, video]

PhD Dissertation

  • Deep Kernel Representation Learning for Complex Data and Reliability Issues (2020)
    Pierre Laforgue  [manuscript, defense slides]